Breaking combinational cycles

Danil Sokolov, Victor Khomenko, Alex Yakovlev

Newcastle University, UK

Introduction

» Combinational cycles

Common in asynchronous circuits (implement “memory”)
... but they upset conventional EDA tools

o Static timing analysis (e.g. SYNOPSYS PRIMETIME)

Eliminates cycles by disabling some timing arcs
Unpredictable and suboptimal choice of timing arcs to disable
May remove important timing paths, e.g. critical paths

o ATPG and offline testing (e.g. SYNOPSYS TETRAMAX)

Limited controlability of signals in the combinational cycles
l.e. inability to set signal to a specific state via primary inputs

» Need for design automation

2/12

Cycle breaking in WORKCRAFT

o Path breaker property

Boolean flag, unset (False) by default
Associated with input and output pins of circuit components
Used to break combinational cycles

e Input pin whose Path breaker property is set (True)

Generates set_disable_timing constraint to disable the timing arcs from the input pin
These constraints can be dumped to an SDC file for use with conventional EDA tools
Not always possible to break all cycles while preserving important timing paths

o Output pin whose Path breaker property is set (True)

Inserts specially implemented testable buffer and testable inverters after the output pin
Testable elements are designed to break cycles without removing timing paths
SCAN-enabled testable elements for compatibility with conventional DIT [1]

[1] D. Lloyd, R. lliman: “Scan insertion and ATPG for C-gate based asynchronous designs”, SNUG, 2014.
3/12

Cycle analyser tool

o Highlighting of gates and pins Tool controls 5
Highlight legend |
S Don't touch zero delay
AOI21 W on a cycle
. _D ot Path breaker
inlb——= [— i Not on any cycle
in2 D-e
o Toggle Path breaker (PB) property "QT + || — @
Pin click — toggle PB of the pin Path breakers
Gate click — toggle PB of gate output pin g3
e Automatic loop breaking g4.0
o Insertion of testable buffers/inverters
e Insertion of SCAN chain
o Writing set_disable_timing constraints Insert Insert Write
TEUFTINW SCAN SDC...

4/12

Disabling timing arcs

o Demo: celement-aoi222.circuit.work
AOI222

1

inl D—e= INV

|

out

in2

»

OUT_BUBBLE1.l — bad path breaker as removes input-output paths (PRIMETIME choice)
U2.A and U2.F — good pair of path breakers (under assumption that feedbacks are fast)
Write SDC... button for dumping set_disable_timing constraints:
set_disable_timing U2 —-from A2 —-to ON

set_disable_timing U2 —-from C2 —-to ON

5/12

Disabling timing arcs: Not always possible

o Demo: celement-decomposed.circuit.work
NAND3

inl D= NANDZ |
» b.' —D out

inZ2 D-e——=

NAND2

Needs g3.B or g4.A as path breaker, but both are on critical paths:
Rise phase: in1+, g1+, in2+, g0-, g3+, [via g4.A] g4-, g0+, out+
Fall phase: in1-, in2-, g1-, g4+, [via g3.B] 93-, out-

6/12

Insertion of testable buffers

o Demo: celement-decomposed-tbuf.circuit.work

ok =S bulk Path breaker operations and automatic cycle breaking
inl D—e—= _l_ _.: - out

- ><
in2 D-e——= B

Insert TBUF/TINV operation
inlpD—e— L |__

RS

in2 D-e——=

—D out

7/12

SCAN chain

o Automatic insertion of basic SCAN chain in WORKCRAFT:

1. SCAN ports scanck, scanen, scanin, and scanout are added

2. Testable elements are replaced by their SCAN-enabled alternatives with additional
CK, SE, and Sl pins

3. Ports scanck and scanen are connected to CK and SE pins of testable elements

4. Testable elements are arranged in a daisy-chain between scanin and scanout
ports (the order is quite random with no optimisation)

o Alternatively, after insertion of TBUF/TINV gates, a custom script can be employed for
a sophisticated SCAN chain insertion

8/12

SCAN chain: “Insert SCAN” after “Insert TBUF/TINV”

o Only need SCAN-enabled implementations for TBUF (and possibly TINV)

o May impose some area and latency overheads
o Demo: celement-decomposed-tbuf-scan.circuit.work

inlp o ‘ .
-D out

B] D scanout
scanck [>T 0 E 0t
t0 a scanin
scanenp —
in2 p—e

9/12

SCAN chain: “Insert SCAN” without “Insert TBUF/TINV”

e Smaller area and latency
e Requires SCAN-enabled alternatives for (a subset of) library gates
o Demo: celement-decomposed-alt-scan.circuit.work

inl D—e— ‘ |
. —D out
i %
| D scanout

in2 p-e—— T

scanck |:>T 0 01
+O qa scanin

scanen p

10/12

o Insertion of testable buffers and SCAN should not break the circuit
» Still, always verify the circuit after modification

» Use the original STG as the environment for the modified circuit

» Two warnings are expected and safe to ignore

Unused scanout signal (not present in the original STG)
Dead places associated with scanck, scanen, scanin signals
(they are forced to O in the mission mode)

11/12

Practical: Loop breaking and offline testing

» Tutorials section at workcraft.org

Modelling causality and concurrency Synthesis and verification of asynchronous circuits
= Modelling with Finite State Machines: Vending machine = Design of C-element (basic, detailed instructions)
= Petri net synthesis: Concurrent vending machine = Design of basic buck controller (medium, some hints)
= Modelling with Petri nets: Dining philosophers = Design of VME bus controller (medium, individual)
= Modelling with STGs: Distributed Mutual Exclusion = Hierarchical design of a realistic buck controller
= Modelling with STGs: Writer-biased read/write lock = |nitialisation of speed-independent circuits
Q = Modelling Genetic Regulatory Networks with STGs: = Loop breaking and offline testing
Lysis-Lysogeny switch in Phage A = Resolution of encoding (CSC) conflicts
= Optimising asynchronous pipelines using wagging = Logic decomposition and technology mapping

= Verification and synthesis of hierarchical designs

All training materials...

o Direct link: https.://workcraft.org/tutorial/synthesis/loop _breaking/start

12/12

	Introduction
	Cycle breaking in Workcraft
	Cycle analyser tool [scale=0.5]15homedanilworkslides2019-07-11-Dialog-LoopBreakingfigcycleanalyser-button.eps
	Disabling timing arcs
	Disabling timing arcs: Not always possible
	Insertion of testable buffers
	SCAN chain
	SCAN chain: ``Insert SCAN'' after ``Insert TBUF/TINV''
	SCAN chain: ``Insert SCAN'' without ``Insert TBUF/TINV''
	Verification
	Practical: Loop breaking and offline testing

