
HIERARCHICAL DESIGN IN

Victor Khomenko, Danil Sokolov, Alex Yakovlev



Why hierarchical?

■ The only way to design large systems

– Requests from the engineers

– Natural development of Workcraft

■ Automation of repetitive tasks by tracking module dependencies

– Reduces chance of human error

– Reduces the amount of necessary documentation

■ Promotes design reuse (within a project and between projects)

■ Improves maintainability

2



Case study: Navigation
■ Realistic systems comprise many modules

– Multiple versions of the same module

– Modules are stored as separate files, often without consistent naming

– Iterative refinements of each module (CSC resolution, concurrency 

reduction, logic decomposition)

– Different people working on different modules

■ 100-1000s of files to navigate 

■ Numerous relationships of various kinds between files that one needs to 

understand and document 

■ Tracking dependencies and navigation can (and should!) be automated

3



Case study: Design reuse
■ Some modules are instantiated multiple times in the same design

– Stages of multiphase buck

– Delay controllers

– Pipeline controllers

■ Modules may be reused between designs

– Opportunistic merge

– Family of A2A elements (WAIT, WAITX, etc.)

■ Hierarchical design helps to identify reusable modules

■ Module reuse should be made easy – avoid repeating work

■ User-extendible library of reusable modules

4



Case study: Import/export

■ Exporting the whole design hierarchy as modular Verilog netlist

■ Import of modular Verilog

■ Option for uniquification

5



Case study: Hierarchical verification
■ Tracking dependencies enables automatic formulation of verification 

obligations

– Saves manual effort

– Reduces risk of human error

– More efficient due to the most abstract models picked up automatically

■ Custom properties can be specified at the most appropriate levels 

of hierarchy

■ Abstract models can be inserted into hierarchy

– Way of capturing the knowledge about the system

– Improves the efficiency of verification

– E.g. token ring stage (e.g. phase of a multiphase buck) can be 

abstracted as a buffer

6



Case study: Hierarchical simulation

■ Simulating an execution at different levels of hierarchy

– Outputs of modules which are not implement can be provided manually

– Synchronised simulation of several modules

■ Local views of a violation trace from formal verification

7



Case study: Hierarchical synthesis

■ Push-button synthesis – saves manual effort

■ Optimisation due to caching synthesis results and preservation of 

intermediate STGs for CSC resolution and technology mapping

■ Re-synthesis of module compositions

■ Decomposition of monolithic modules using DesiJ

8



Case study: Hierarchical reset
■ Saving manual effort

■ Reusing existing reset circuitry for modules

■ Optimise reset logic by tracking dependencies (when looking at a module in 

isolation, one cannot rely on inputs being reset, but context can help)

9



Case study: Hierarchical loop breaking
■ Saving manual effort

■ Optimising loop breaking due to tracking dependencies

■ Taking global loops into account

■ No need to rely on PrimeTime loop breaking

■ Higher ATPG coverage

10



Representation in
■ Two fundamental relations between modules

– Module A instantiates module B (A must be a circuit)

– Module C refines module D

– Special low-level modules: complex gates, library gates, MUTEX, WAIT

■ No cycles

■ Design can be represented as a rooted directed acyclic graph

11



Example hierarchy

Library gates

Root

STG for B

STG for B with CSC

Circuit for B

STG for C

Circuit for C

12



Vision
■ Productivity (10x increase)

– Tracking dependencies

– Automation of recurring tasks

– Higher synthesis success rate

– Systematic design reuse

■ Confidence (10x reduction of human error rate)

– Enhanced verification flow exploiting module dependencies

■ Better circuits (up to 50% improvement of latency and area)

– Optimisation of reset and test circuitry

13


