LA

HIERARCHICAL DESIGN TNV
Werk

Victor Khomenko, Danil Sokolov, Alex Yakovlev

== Newcastle

‘E’Umvers ity

Why hierarchical?

m The only way to design large systems
- Requests from the engineers

— Natural development of Workcraft

m Automation of repetitive tasks by tracking module dependencies
- Reduces chance of human error

- Reduces the amount of necessary documentation
m Promotes design reuse (within a project and between projects)

m [mproves maintainability

Case study: Navigation

Realistic systems comprise many modules

Multiple versions of the same module

Modules are stored as separate files, often without consistent naming

lterative refinements of each module (CSC resolution, concurrency
reduction, logic decomposition)

Different people working on different modules

100-1000s of files to navigate ®

Numerous relationships of various kinds between files that one needs to
understand and document ® ® ®

Tracking dependencies and navigation can (and should!) be automated

Case study: Design reuse

m Some modules are instantiated multiple times in the same design
- Stages of multiphase buck
— Delay controllers
- Pipeline controllers

m Modules may be reused between designs
— Opportunistic merge
- Family of A2A elements (WAIT, WAITX, etc.)

m Hierarchical design helps to identify reusable modules

m Module reuse should be made easy - avoid repeating work

m User-extendible library of reusable modules

Case study: Import/export

m Exporting the whole design hierarchy as modular Verilog netlist
m Import of modular Verilog

m Option for uniquification

Case study: Hierarchical verification

m Tracking dependencies enables automatic formulation of verification
obligations

- Saves manual effort
— Reduces risk of human error

- More efficient due to the most abstract models picked up automatically

m Custom properties can be specified at the most appropriate levels
of hierarchy

m Abstract models can be inserted into hierarchy

- Way of capturing the knowledge about the system
- Improves the efficiency of verification

- E.g. token ring stage (e.g. phase of a multiphase buck) can be
abstracted as a buffer

Case study: Hierarchical simulation

m Simulating an execution at different levels of hierarchy
— Outputs of modules which are not implement can be provided manually
- Synchronised simulation of several modules

m Local views of a violation trace from formal verification

Case study: Hierarchical synthesis

m Push-button synthesis - saves manual effort

m Optimisation due to caching synthesis results and preservation of
intermediate STGs for CSC resolution and technology mapping

m Re-synthesis of module compositions

m Decomposition of monolithic modules using DesiJ

(?

Input Output

-

Blackbox

Stimulus Response

Case study: Hierarchical reset

m Saving manual effort
m Reusing existing reset circuitry for modules

m Optimise reset logic by tracking dependencies (when looking at a module in
Isolation, one cannot rely on inputs being reset, but context can help)

. M_reset :
I

out

Case study: Hierarchical loop breaking

m Saving manual effort

m Optimising loop breaking due to tracking dependencies
m Taking global loops into account

m No need to rely on PrimeTime loop breaking

m Higher ATPG coverage

Q

doo"

10

Representation in Werk

m [wo fundamental relations between modules
- Module A instantiates module B (A must be a circuit)

- Module C refines module D

- Special low-level modules: complex gates, library gates, MUTEX, WAIT
m No cycles
m Design can be represented as a rooted directed acyclic graph

11

inIlo— in outt ROOt

Example hierarchy
STG for B i |

STG for C

in+ outl+ in- outl- in+ out2+ in- out2-
f
N | inl+ in1-
* ~ g
T ~ T
out- out+
STG for B with CSC T~
in2+ in2-
in+ outl+ in csc+ outl- in+ out2+ in- csc- out2- L .

|

Circuit for B | ey ey _somm o ¥ Circuit for C
r>c —] $-D outl inl Cc2 INV
P §D— .
Vi /2
1 J I/ 'I
\

N
Library gates =) » >0

AOI2BB1 INV C2

AOI222

12

Vision
m Productivity (10x increase)
— Tracking dependencies
— Automation of recurring tasks

- Higher synthesis success rate
- Systematic design reuse

m Confidence (10x reduction of human error rate)
- Enhanced verification flow exploiting module dependencies

m Better circuits (up to 50% improvement of latency and area)
— Optimisation of reset and test circuitry

13

