
Logic Synthesis and

Implementation Styles in

Asynchronous Circuits Design

Victor.Khomenko@ncl.ac.uk

School of Computing Science,

Newcastle University, UK

2

Speed-independence assumptions

• Gates/latches are atomic (so no internal hazards)

• Gate delays are positive and finite, but variable

and unbounded

• Wire delays are negligible (SI)

• Alternatively, [some] wire forks are isochronic

(QDI), i.e. wire delays can be added to gate delays

F

instant

evaluator

delay

…

3

SI decomposition

G

…

H1

Hk

…
…

delay

delay

delay

F

instant

evaluator

delay

…

Hazards can be

introduced due to

these delays!

4

Gates & latches

• Good citizens: unate gates/latches, e.g. BUFFER,
AND, OR, NAND, NOR, AND-OR, OR-AND, C-
element, SR-latch, RS-latch

 Output inverters (‘bubbles’) can be used
liberally, e.g. NAND, NOR, as the invertor’s
delay can be added to the gate’s delay

 Input inverters are suspect as they introduce
delays, but in practice are ok if the wire
between the inverter and the gate is short

• Suspects: binate gates, e.g. XOR, NXOR, MUX, D-
latch – may have internal hazards, but may still be
useful

5

Logic synthesis

• Encoding (CSC) conflicts must be resolved first

• Several kinds of implementation can then be

derived automatically:

 complex-gate (CG)

 generalised C-element (gC)

 standard-C implementation (stdC)

• Can mix implementation styles on per-signal

basis

• Logic decomposition may still be required if the

gates are too complex

6

Example: complex-gate synthesis

Code Nxtc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
1
0
0
1
1
1
-

Eqn (a+c)b+d¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

)()()(sOutsCodesNxt zzz
a
b (a+c)b+d¯ cd

The size of this Boolean

expression is not limited!

7

Support, triggers and context
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

a
b (a+c)b+d¯ cd

Signals that are the inputs
of the gate producing a
signal form its support,
e.g. the support of c is
{a,b,c,d}. Supports are not
unique in general.

Signals whose occurrence
can immediately enable a
signal are called its triggers,
e.g. the triggers of c are {b,d}.
Triggers are unique, and are
always in the support.

Signals in the support which
are not triggers are called the
context, e.g. the context of c is
{a,c}. Context is not unique in
general.

support = triggers + context

8

Example: gC implementation

Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

Eqn ab+d b¯ ¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

otherwise

1)(if0

1)(if1

)(

otherwise

0)(if0

1)(if1

)(sNxt

sOut

sResetsNxt

sOut

sSet z

z

zz

z

z

a
b
d

ab+d¯

cС

b b

+

–

Implemented as pull-up and pull-down networks of

transistors + ‘keeper’; assumed to be atomic; risk

of transient short-circuit during initialisation

9

Example: stdC implementation
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

‘Monotonic cover’

constraints

Eqn abc+d b̄¯

b b

cС

a
b
d

ab+d¯

hazard due to

a new delay
¯

b b

cС

a
b
d

abc+d¯ ¯

10

Logic Decomposition

• Often complex-gates are too complex to be mapped to

a gate library, and so logic decomposition is required

• Cannot naïvely break up complex-gates – this is likely

to introduce hazards (at least, timing assumptions are

required)

• Decomposition is one of the most difficult tasks – no

guarantee that automatic decomposition will succeed

• Online tutorial on logic decomposition and technology

mapping:

https://workcraft.org/tutorial/synthesis/technology_mapping/start

