
Asynchronous Design: Introduction
to Principles and Models

Alex Yakovlev

Newcastle University

Newcastle upon Tyne, U.K.

• Six Asynchronous Design Principles:
– Asynchronous Handshaking
– Delay-insensitive Encoding
– Completion Detection
– Causal Acknowledgement
– Full Indication and Early Evaluation
– Time Comparison

• Pros and Cons
• (Some of the) Models, Techniques and Tools for

Asynchronous Design
• Asynchronous control logic synthesis from Signal Transition

Graphs
• Why is Async good for Analog Mixed Signal?

Outline

1

Asynchronous Behaviour

• Synchronous vs Asynchronous behaviour in general terms,
examples:

– Orchestra playing with vs without a conductor

– Party of people having a set menu vs a la carte

• Synchronous means all parts of the system acting globally in
tact, even if some or all part ‘do nothing’

• Asynchronous means parts of the system act on demand
rather than on global clock tick

• Acting in computation and communication is, generally,
changing the system state

• Synchrony and Asynchrony can be in found in CPUs,
Memory, Communications, SoCs, NoCs etc.

2

Key Principles of Asynchronous Design

• Asynchronous handshaking

• Delay-insensitive encoding

• Completion detection

• Causal acknowledgment (aka indication or
indicatability)

• Strong and weak causality (full indication and early
evaluation)

• “Time comparison” (synchronisation, arbitration)

3

Why and what is handshaking?

Mutual Synchronisation is via Handshake

4

Synchronous clocking

How we
think

What we
design

5

Asynchronous handshaking

What we
design

How we
think

Handshake latch
Handshake CL”Channel” or ”Link”

6

Handshake Signalling Protocols

Level Signalling (RTZ or 4-phase)

Transition Signalling (NRZ or 2-phase)

One cycle

req

ack

req

One cycle

req

ack

One cycle

7

ack

(a) (b)

Why and what is delay-insensitive coding?

Data Token = (Data Value, Validity Flag)

8

Bundled Data

req

ack

Data

One cycle

req

ack

Data

Return to Zero:

Non-Return-to-Zero

One cycle

req

ack

Data

One cycle

9

DI encoded data (Dual-Rail)

ack

Data.0

One cycle

Data.1

ack

Data.0Data.1

Logical 1
Logical 0

One cycle

NULL (spacer) NULL

cycle

Data.1

ack

Data.0
Logical 1

Logical 0

cycle cycle

Logical 1 Logical 1

cycle

RTZ:

NRZ:NRZ coding leads to
complex logic
implementation;
special ways to track
odd and even phases
and logic values are
needed, such as
LEDR 10

DI codes (1-of-n and m-of-n)

• 1-of-4:

– 0001=> 00, 0010=>01, 0100=>10, 1000=>11

• 2-of-4:

– 1100, 1010, 1001, 0110, 0101, 0011 – total 6 combinations
(cf. 2-bit dual-rail – 4 comb.)

• 3-of-6:

– 111000, 110100, …, 000111 – total 20 combinations (can
encode 4 bits + 4 control tokens)

• 2-of-7:

– 1100000, 1010000, …, 0000011 – total 21 combinations (4
bits + 5 control tokens)

11

Why and what is completion detection?

Signalling that the Transients are over

12

Bundled-data logic blocks

Single-rail logic

•
•
•

•
•
•

delaystart done

Conventional logic + matched delay

Completion
is implicit:
by done
signal

The delay must
scale with the worst
case delay path,
So … not really self-
timed

13

True completion detection

Dual-rail
logic

•
•
•

•
•
•

C done

Completion detection tree

Completion
detection for one
dual-rail bit

C

•
•
•

Multi-input C-
element

14

The Muller C element

C

A

B
Z

A B Z+

0 0 0

0 1 Z

1 0 Z

1 1 1

Vdd

Gnd

A

A

A

AB

B

B

B

Z

Z

Z

[van Berkel 91]

Static Logic

Implementation

C

15

C-element: Other implementations

A

A

B

B

Gnd

Vdd

Z

A

A

B

B

Gnd

Vdd

Z

Weak inverter

Quasi-StaticDynamic

Why and what is causal acknowledgment?

Every signal event must be acknowledged
by another event

17

Causal acknowledgment

a(0)

b(0)
c(0)

x1 (1)

x2 (1)

x3(1)

C-element implementation using simple gates

a+

b+

x1- c+

x2-

x1+

c-

x3-

a+

b+

a-

b-

c+ c-

a-

b- x2+

x3+

Unack’ed transitions x2-
and x3- may cause a
hazard on output c

However, under Fundamental
Mode (slow environment) the
circuit is safe

18

Principle of causal acknowledgement

a(0)

b(0)

c(0)
x1(1)

x4(0)

x2(0)

x3(1)

a+

b+

a-

b-

c+ c-

C-element implementation using simple gates

a-

b-

x4- x3+ x2- c-

a+

b+

x1- x2+

x3- x1+ c+

x4+

Each transition is
causally ack’ed,
hence no hazards
can appear

19

Why and what are strong and weak causality ?

Degree of necessity of precedence of some events for
other events

20

Strong Causality

• Petri net transitions synchronising as rendez-vous

A

C

B

• Logic circuits: Muller C-element (in 0-1 and 1-0 transitions),
AND gate (in 0-1 transitions), OR gate (in 1-0 tranisitions)

A B C+

0 0 0
0 1 C
1 0 C
1 1 1

Strong precedence

21

A

B
CC

Weak Causality

• Petri net transitions communicating via places

A

C

B

• Logic circuits: AND gate (in 1-0 transitions), OR gate (in 0-1
transitions)

A(1->0)

B(1->0)

C(0)
A(0->1)

B(0->1)

C(1)

Weak precedence

22

Full indication versus Early Evaluation

A.t

A.f

B.t

B.f

C.t

C.f

Dual-rail AND gate
with “early propagation”

Allows outputs to be produced from NULL
to Codeword only when some (required)
inputs have transitioned from NULL to
Codeword (similar for Codeword to NULL)

C

C

C

C

B.t

A.t
C.t

C.f

A.t

A.f

A.f

B.f

B.t

B.f

Dual-rail AND gate
with full input
acknowledgement

23

Why and what is timing comparison?

Telling if some event happened before
another event

24

Synchronizers and arbiters

Your system

Input

Your system

Input 1

Input 2

 Synchronizer

Decides which clock
cycle to use for the

input data

 Asynchronous
arbiter

Decides the order of
inputs

25

Metastability is....

Not being able to decide…

Q

Q

Clock

D

tin

tin -> 0

D

Clock

Request

Processor Clock

Set-up time violated

26

Typical responses

• We assume all starting points are equally probable
• Most are a long way from the “balance point”
• A few are very close and take a long time to resolve

Clock

Q Output

Clock

D Q
#1

Q Trigger

27

Synchronizer

• t is time allowed for the Q to change between CLK a and CLK b

• is the recovery time constant, usually the gain-bandwidth of the circuit

• Tw is the “metastability window” (aperture around clock edge in which
the capture of data edge causes a delay that is greater than normal
propagation delay of the FF)

• and Tw depend on the circuit

• We assume that all values of tin are equally probable

D Q D Q

CLK a

VALID

#1 #2

dcw

t

ffT

e
MTBF

..

/

CLK b

28

Two-way arbiter (Mutual exclusion element)

req1

req2

ack2

ack1

(0)

(0)

(1)

(1)

(0)

(0)

Basic arbitration element: Mutex (due to Seitz, 1979)

An asynchronous data latch with
metastability resolver can be built similarly

Metastability
resolver

29

• Understanding metastability is becoming very important as
analogue and digital domains get closer, and timing
uncertainty and PVT variations increase

• Arbitration and synchronization are increasing their
importance due to many-core, timing domains, NoCs, GALS

• Design automation for metastability and synchronization is
turning from research to practice (Blendix)

Importance of Timing Comparison

30

Pros…

• People have always been excited by asynchronous design, and motivated by:

– Higher performance (work on average not worst case delays)

– Lower power consumption (automatic fine-grain “clock” gating;

automatic instantaneous stand-by at arbitrary granularity in time and
function; distributed localized control; more architectural
options/freedom; more freedom to scale the supply voltage)

– Modularity (Timing is at interfaces)

– Lower EMI and smoother Idd (the local “clocks” tend to tick at

random points in time)

– Low sensitivity to PVT variations (timing based on matched delays

or even delay insensitive)

– Secure chips (white noise current spectrum)

– Plus, … a lot of scope and fun for research (there are many unexplored
paths in this forest!)

31

• So why have async designers been often “crucified” in the past?

– Overhead (area, speed, power)

• Control and handshaking

• Dual-rail and completion detection costs

– Hard to design
• yes and no, ... It’s different – there are very many styles and variants

to go and one can easily get confused which is better

– Very few **practical** CAD tools (but many academic tools)

• Tools are quite specific to particular design styles and design niches;
hence don’ t cover the whole spectrum

• Complexity of timing and performance models

• Difficulty with sign-off (for particular frequency requirements)

• ... But the situation is improving

– Hard to Test
• Possible, but not as mature as sync

… Cons

32

Models and techniques for design

33

Models and techniques for asynchronous design

• Models:

– Delay model (inertial, pure, gate delay, wire delay, bounded and
unbounded delays)

– Models of environment (fundamental mode, input-output)

– Models of switching behaviour (state-based, event-based, hybrid)

• RTL level:

– Data and control paths separate (data flow graphs, FSMs, Signal
Transition Graphs, Synchronised Transitions)

– Pipeline based (Combinational logic plus registers and latch controllers,
e.g. micropipelines, gate-level pipelining)

– Process-based (CSP-like, Balsa, Haste, Communicating Hardware
Processes)

• High-level models

– Flow graphs (Marked graphs, extended MGs), Petri nets, Markov
Chains

– Behavioural HDLs (C, SystemC) 34

Gate vs wire delay models

• Gate delay model: delays in gates, no delays in wires

• Wire delay model: delays in gates and wires

Delay models for async. circuits

• Bounded delays (BD): realistic for gates and wires.

– Technology mapping is easy, verification is difficult

• Speed independent (SI): Unbounded (pessimistic)
delays for gates and “negligible” (optimistic) delays
for wires.

– Technology mapping is more difficult, verification
is easy

• Delay insensitive (DI): Unbounded (pessimistic)
delays for gates and wires.

– DI class (built out of basic gates) is almost empty

• Quasi-delay insensitive (QDI): Delay insensitive
except for critical wire forks (isochronic forks).

– In practice it is the same as speed independent

BD

SI QDI

DI

36

Control Logic

• Control specification based on Petri
nets (Signal Transition graphs)

37

Control specification

A+

B+

A-

B-

A

B

A input

B output

Timing DiagramSignal Transition Graph

(STG)

38

Control specification

A+

B+

A-

B-

A B

39

Control specification

A+

B-

A-

B+

A B

40

Control specification

A+

C-

A-

C+
A

C

B+

B- B

CC

41

Control specification

A+

C-

A-

C+

B+

B-

CCC

A

B

42

43

VME bus example using Petri nets

Device

LDS

LDTACK

D

DSr

DSw

DTACK

VME Bus
Controller

Data

Transceiver

Bus
DSr

LDS

LDTACK

D

DTACK

Read Cycle

44

STG for the READ cycle

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

LDS

LDTACK

D

DSr

DTACK

VME Bus
Controller

Choice: Read and Write cycles

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

DTACK-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw-

DTACK-

LDS-

LDTACK-

45

Choice: Read and Write cycles

DTACK-

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw- 46

Workcraft tool: workcraft.org

• Framework for interpreted graph models

– Circuits, STGs, state graphs, dataflow structures, …

– Interoperability between different abstraction levels

– Consistency for users; convenience for developers

• Elaborate graphical user interface

– Visual editing, analysis, and simulation

– Easy access to common operations

– Possibility to script specialised actions

• Interface to back-end tools for synthesis and verification

– Reuse of established theory and tools (PETRIFY , MPSAT ,
PUNF)

47

Synthesis & verification of async circuits

48

Some references
• General Async Design: J. Sparsø and S.B. Furber, editors. Principles of

Asynchronous Circuit Design, Kluwer Academic Publishers, 2001. (electronic

version of a tutorial based on this book can be found on:

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/855/pdf/imm855.p

df

• Async Control Synthesis: J. Cortadella, M. Kishinevsky, A. Kondratyev,

L. Lavagno, and A. Yakovlev. Logic Synthesis of Asynchronous Controllers

and Interfaces. Springer-Verlag, 2002. (Petrify software can be downloaded

from: http://www.lsi.upc.edu/~jordicf/petrify/)

• Arbiters and Synchronizers: D.J. Kinniment, Synchronization and

Arbitration in Digital Systems, Wiley and Sons, 2007 (a tutorial on arbitration

and synchronization from ASYNC/NOCS 2008 can be found:

http://async.org.uk/async2008/async-nocs-slides/Tutorial-Monday/Kinniment-

ASYNC-2008-Tutorial.pdf)

• Asynchronous on-chip interconnect: John Bainbridge, Asynchronous

System-on-Chip Interconnect, BCS Distinguished Dissertations, Springer-

Verlag, 2002 (electronic version of the PhD thesis can be found on:

http://intranet.cs.man.ac.uk/apt/publications/thesis/bainbridge00_phd.php)

49

x

y

z

x+

x-

y+

y-

z+

z-

Signal Transition Graph (STG)

x

y

z

Logic synthesis: xyz-example

50

x

y

z

x+

x-

y+

y-

z+

z-

Token flow

51

x+

x-

y+

y-

z+

z-

xyz

000
x+

100
y+z+

z+y+

101 110

111

x-

x-

001

011
y+

z-

010

y-

State graph

52

x z x y ()

y z x

z x y z

Next-state functions

xyz

000
x+

100
y+z+

z+y+

101 110

111

x-

x-

001

011
y+

z-

010

y-

53

1) Truth Table 2) Boolean Minimization

Deriving next state functions

54

Previous
state

Next State

0*0 0 1 0 0

1 0*0* 1 1 1

0 1*0 0 0 0

1 1 0* 1 1 1

0 0*1 0 1 1

1*0*1 0 1 1

0 1 1* 0 1 0

1*1 1 0 1 1

xy
z

00 10 11 01

0 1 1 1 0

1 0 0 0 0

x z x y ()

Observations in this example:
1) All combinations are used as states
2) All states appear uniquely
Generally, this is not always the case!

x

z

y

Complex Gate netlist

x z x y ()

y z x

z x y z

55

56

Circuit synthesis

• Goal:

– Derive a hazard-free circuit
under a given delay model and
mode of operation

57

Speed independence

• Delay model

– Unbounded gate / environment delays

– Certain wire delays shorter than certain paths in the
circuit

• Conditions for implementability:

– Consistency

– Complete State Coding

– Persistency

58

Implementability conditions

• Consistency

– Rising and falling transitions of each signal alternate in
any trace

• Complete state coding (CSC)

– Next-state functions correctly defined

• Persistency

– No event can be disabled by another event (unless they
are both inputs)

59

Implementability conditions

• Consistency + CSC + persistency

• There exists a speed-independent circuit that implements
the behavior of the STG

(under the assumption that any Boolean function
can be implemented with one complex gate)

60

Persistency

100 000 001
a- c+

b+ b+

a

c
b

a

c

b

is this a pulse ?

Speed independence glitch-free output behavior under any delay

Why Async for Analog

Emergence of little digital electronics

• Analog and digital electronics are becoming more intertwined
• Analog domain becomes complex and needs digital control

62

• Efficient implementation of power converters is
paramount

– Extending battery life for mobile gadgets

– Reducing energy bill for PCs and data centres (5% and
3% of global electricity production, respectively)

• Need for responsive and reliable control circuits

– Millions of control decisions per second for years

– A wrong decision may permanently damage the circuit

• Need for EDA (little digital vs big digital design flow)

– RTL flow is optimised for sync data processing

– Ad hoc async solutions are prone to errors and hard to
verify

Motivation: power electronics context

63

A4A design flow (supported by Workcraft)

64

Case study: Multiphase buck

65

Multiphase Buck: Sync Control

66

• Two clocks: phase activation (slow) and sampling (fast)
• Conventional RTL design flow
• Response time is of order of clock periods
• Need for multiple synchronizers (grey boxes) – latency, metastability
• Power consumed even when idle

Multiphase Buck: Async Control

67

• Token ring instead of phase activation clock
• Response time of order of gate delays
• No dynamic power consumption when idle
• No need for synchronisers – all signals are asynchronous
• A4A design flow

Simulation results

68

Reaction time

69

Peak current

70

Inductor losses

71

Design Results

72

Analog-2-Async (A2A):
Wait, WaitX, Sample…

