
Verification and synthesis of hierarchical designs
In this tutorial we revisit the hierarchical buck converter to verify the conformation of its components and learn
how their parallel composition can be used for verification of system-wide properties and (sometimes) for
deriving a better circuit implementation.

Hierarchical design of a buck controller

Let us start with the following decomposition of the design described in hierarchical buck converter – here the
CHARGE module is further decomposed into CHARGE_GP and CHARGE_GN communicating with the help of an extra
signal pass:

WAIT and WAIT2 are predefined components from the library of Asynchronous
Arbitration Primitives.

The behaviour of the CYCLE module was explained in the hierarchical buck tutorial and is captured by the
following STG:

https://workcraft.org/tutorial/synthesis/decomposition/start
https://workcraft.org/tutorial/synthesis/decomposition/start
https://workcraft.org/a2a/start
https://workcraft.org/tutorial/synthesis/decomposition/start

STG specification of CYCLE module cycle-mutex.stg.work (4 KiB)

The STG specifications of CHARGE_GP and CHARGE_GN are as follows:

STG specification of CHARGE_GP module charge_gp.stg.work (3 KiB)

STG specification of CHARGE_GN module charge_gn.stg.work (3 KiB)

All these STGs can be verified and synthesised separately. However, it is possible to assemble an incorrect
circuit from correct components; the main focus of this tutorial is to verify and optimise the specification of the
overall system.

Verification of N-way conformation

An important system-level property is the conformation of each module to its environment, i.e. the module must
never produce outputs that are not expected is environment. Note that the environment of each module in the
case of hierarchical design is the composition of all the other modules, and the property that each module
conforms to the composition of all the other modules is called N-way conformation.

Let us verify N-way conformation for the modules of the buck controller. Capture or download the STGs for
CYCLE, CHARGE_GPs and CHARGE_GN modules and save them as cycle-mutex.stg.work, charge_gp.stg.work,
and charge_gn.stg.work, respectively. Open these three STGs in Workcraft and verify this property via
Verification→N-way conformation… menu. In the N-way conformation dialog select the STGs of all the system
modules as follows:

https://workcraft.org/_media/tutorial/synthesis/composition/cycle-mutex.stg.work
https://workcraft.org/_media/tutorial/synthesis/composition/charge_gp.stg.work
https://workcraft.org/_media/tutorial/synthesis/composition/charge_gn.stg.work

Press Run button to start verification. The verification should pass indicating that N-way conformation holds.

As an experiment, change one of the module interfaces, e.g. swap polarity of pass output in the CHARG_GP (by
right-clicking the transitions of this signal and selecting Mirror transition sign in the pop up menu). Note that
now each individual module still passes all the standard verification checks, but the overall system is wrong, as
CHARG_GP and CHARG_GN do not agree on the initial value of pass. Repeating the verification of N-way
conformation now yields a violation trace, together with the name of offending signal:

Note that if Play button is pressed, then Workcraft automatically switches to the module STG producing the
unexpected output and initiates its simulation with the reported violation trace.

More details on the violation of N-way conformation that can help debugging the issue can be found in the
Output pane:

[WARNING] N-way conformation is violated.

Violation trace of the composition: me_r2+, uv_san+, me_r1-, uv_ctrl-, chrg_req+, gp+,

 gp_ack+, oc_ctrl+, oc_san+, gp-, gp_ack-

Projection to 'cycle-mutex.stg': me_r2+, uv_san+, me_r1-, uv_ctrl-, chrg_req+

Projection to 'charge_gp.stg': chrg_req+, gp+, gp_ack+, oc_ctrl+, oc_san+, gp-, gp_ack-

[WARNING] Output 'pass-' becomes unexpectedly enabled

Projection to 'charge_gn.stg': [empty trace]

N-way conformation is checked for all the modules in one go using their parallel composition. The violation
trace of the composition is then projected to each module, and the module's state after the projection trace is
then checked for any unexpectedly enabled output events, i.e. those enabled in the module but not in the overall
composition. If such an event is detected then the module does not conform to its environment. In the above
example, output pass- becomes unexpectedly enabled in CHARGE_GP after the following sequence of events:
chrg_req+, gp+, gp_ack+, oc_ctrl+, oc_san+, gp-, gp_ack-.

Parallel composition of module STGs

System decomposition into manageable modules is paramount both for comprehension by designers and for
efficient speed-independent implementation by synthesis tools. As long as interface conformation is preserved,
the designer can focus on optimisation, verification, and synthesis of individual modules. However, verification
of system-wide properties may require crossing the module boundaries, and to accomplish this the parallel
composition of all the modules need to be constructed.

Let us build the parallel composition of CYCLE, CHARGE_GP and CHARGE_GN modules. Make sure their STGs are
open in Workcraft (do not forget to undo the change of polarity for pass transitions) and select
Tools→Composition→Parallel composition [PComp] menu. In the revealed Parallel composition dialog:

Tick the STGs to be composed, i.e. charge_gp.stg.work, charge_gn.stg.work, and cycle-
mutex.stg.work.

Select Make internal option in order to convert the inter-module communication signals into internal.

Tick Guaranteed N-way conformation option, as we have already verified this. (This allows the PComp
backend to optimise the parallel composition.)

The dialog should look as follows:

Press the Run button to compose these STGs – the result should look similar to this:

Parallel composition control-composed.stg.work

If you did not tick Guaranteed N-way conformation option, then the composed STG may have
some redundant places (sometimes implicit within arcs). These places can be removed by
resynthesis via Conversion→Net synthesis [Petrify] menu or individually, after checking their
redundancy via Check place redundancy popup menu.

System-wide verification

Standard implementability properties

Verify the composition STG using Verification menu (see standard verification properties for details). All these
properties must hold for the specification to be implementable as a speed-independent circuit.

Custom short circuit property

For our buck example one must verify that PMOS and NMOS transistors are never ON simultaneously (which
would lead to a short circuit). Violation of this custom property can be formulated as a reachability analysis
problem using Reach language (see verification of a basic buck controller for details): ($S"gp" | $S"gp_ack")
& ($S"gn" | $S"gn_ack"). This property refers to signals of several buck control modules, therefore it has to
be checked on the composition of modules.

Let us verify the absence of a short circuit in the composition by defining a new custom property via
Verification→Custom property [MPSat]… menu. Enter the above Reach predicate in the Custom property
dialog. Note that the MPSat mode must be set to STG reachability analysis and the predicate must be
unsatisfiable for the property to hold:

https://workcraft.org/help/verification
https://workcraft.org/help/reach
https://workcraft.org/tutorial/synthesis/buck/start#formal_verification

Pressing the Run button should confirm that the property holds, i.e. no state is reachable that satisfies the short
circuit predicate.

Synthesis of the composition

One of the important advantages of hierarchical design is that the modules can be synthesised separately.
However, sometimes one can improve the implementation of the overall system by doing cross-boundary
optimisations. This is done by composing several tightly coupled modules and synthesising the resulting STG.
This may occasionally result in a better circuit because:

Composed STGs restrict the behaviours of each other, meaning some states become unreachable, adding
don't-cares into minimisation tables during logic synthesis.
The inter-module communication signals can be hidden (turned to dummies and/or contracted), i.e.
fewer signals have to be implemented.

Hiding signals does not always result in a smaller circuit. One of the reasons is that hiding may
introduce CSC conflicts which have to be resolved, e.g. by inserting new signals. Note that
MPSat backend requires CSC conflicts to be explicitly resolved prior to synthesis; Petrify
back-end tries to implicitly resolve CSC conflicts before proceeding with the synthesis. For
simplicity, in this tutorial we will use Petrify. To use MPSat, resolve CSC conflicts using
Tools→Encoding conflicts→… menu, or methods described in the Resolution of encoding
(CSC) conflicts tutorial.

Another problem is that Logic decomposition and technology mapping are much more difficult
for large STGs.

Let us evaluate the benefits of cross-boundary optimisation for the buck controller. In the composed STG
chrg_req, pass, and chrg_ack used to be the inter-module communication signals, and therefore may be
redundant in the composition. However, chrg_req is also a mutex output and thus has to be preserved to satisfy
the mutex protocol. Therefore, only pass and chrg_ack can be hidden. Select transitions of these two signals
(one transition per signal is sufficient) and these signals via the Conversion→Net synthesis hiding selected
signals and dummies [Petrify] menu. The simplified STG should look similar to this (note that place me was
renamed to p0 by Petrify, but its Mutex tag was automatically restored from the context – in general this is not
always possible and might be necessary to do manually):

Simplified composition control-simplified.stg.work

Verify the obtained STG for the standard speed-independent implementability properties via
Verification→Consistency, deadlock freeness, input properness, output persistency, and mutex implementability
(reuse unfolding) [MPSat] menu. Then proceed to the technology mapping, e.g. using Petrify (relying on its
automatic CSC conflict resolution) – Synthesis→Technology mapping [Petrify] menu (by default gates from

https://workcraft.org/tutorial/synthesis/csc-resolution/start
https://workcraft.org/tutorial/synthesis/technology_mapping/start

libraries/workcraft.lib are used; this can be changed under Gate library for technology mapping option in
Model→Digital circuit preference that is accessible via Edit→Preferences… menu).

The area of the resultant circuit (reported via Tools→Statistics→Circuit analysis) is 220 units + MUTEX. For
comparison, when the controller modules are synthesised separately, the total area would be 256 units +
MUTEX (16+MUTEX for CYCLE, 120 for CHARGE_GP, and 120 for CHARGE_GN), i.e. 14% reduction.

Note that even better results can be achieved by other optimisation techniques, such as concurrency reduction.
For example, consider the reset phase of the WAIT components in CHARGE_GP and CHARGE_GN modules. The reset
of WAIT element is just a single gate delay and does not depend on the environment delay. It is quite reasonable
to assume this would happen faster that switching a large power regulating transistor. Therefore, without
sacrificing performance, one can reduce the concurrency of WAIT reset as follows:

STG of CHARGE_GP module with concurrency reduction charge_gp-cr.stg.work (3 KiB)

STG of CHARGE_GN module with concurrency reduction charge_gn-cr.stg.work (3 KiB)

This concurrency reduction significantly simplifies the implementations of CHARGE_GP and CHARGE_GN, down to
60 units, so the area of the whole controller is reduced to 136 units. Using the composition technique the area
can be further reduced down to 128 units (equivalent to removing a single inverter).

To conclude, hierarchical design is the recommended method for designing controllers with more than a handful
of signals. This tutorial explained how to verify system-wide properties of such designs. The simplicity of
synthesising individual modules (compared to synthesising the overall system) is a very important advantage of
hierarchical designs, making the process much more predictable. Moreover, if cross-boundary optimisation is
desirable, one can always automatically derive the STG for the overall system by composing the components
and hiding the inter-module communication. The resulting large STG is likely to be challenging to synthesise,
but so would the monolithic specification of the overall system if one did not use the hierarchical approach.

https://workcraft.org/_media/tutorial/synthesis/composition/charge_gp-cr.stg.work
https://workcraft.org/_media/tutorial/synthesis/composition/charge_gn-cr.stg.work

