
1

Petri nets and STGs:

● Notation

● Modelling techniques

● Decomposition

Victor.Khomenko@ncl.ac.uk

mailto:Victor.Khomenko@ncl.ac.uk

2

From FSMs to PNs
 Represent a concurrent system using several FSMs,

each with its own local state, communicating by jointly

executing common actions

 The overall system state is represented in a distributed

manner, as a collection of the local states of the

individual FSMs (in contrast to a single currently active

state of an FSM)

 The system’s structure and potential changes of states

can be visualised using a directed graph

3

Example: Producer/Buffer/Consumer
begin parallel

Producer: while true do

produce item

deposit item

Buffer: while true do

deposit item

remove item

Consumer: while true do

remove item

consume item

end parallel

common action

common action

4

Modelling Producer
Producer: while true do

produce item

deposit item

FSM model: PN model:

prod dep prod dep

5

Modelling Buffer
Buffer: while true do

deposit item

remove item

FSM model: PN model:

remdep dep rem

6

Modelling Consumer
Consumer: while true do

remove item

consume item

FSM model: PN model:

consrem rem cons

7

Composing Petri net models
Draw the three Petri nets next to each other and glue

together boxes with the same label (synchronous

communication = join execution of common actions);

some (informal) annotation can optionally be added:

rem consprod dep

ready to deposit

ready to produce

buffer full

ready to consume

ready to remove

buffer empty

dep rem

8

Composing Petri net models
Draw the three Petri nets next to each other and glue

together boxes with the same label (synchronous

communication = join execution of common actions);

some (informal) annotation can optionally be added:

consprod dep

ready to deposit

ready to produce

buffer full

ready to consume

ready to remove

buffer empty

rem

9

Structure of Petri nets
Interpretation of different components:

 circles are called places and represent local states

 boxes are called transitions and represent actions

changing local states

 black dots are called tokens and represent the current

holding of local states (in general, a place may contain

several tokens – e.g. to model a counter)

 arcs indicate how executing a transition modifies the

state of a Petri net

10

Transition firing rule
Consider a PN with some marking M: P → {0, 1, 2, …}

A transition t is enabled at M if for every place p such

that (p,t)∈F we have M(p)>0 (i.e. all its preceding places

are marked). Firing an enabled transition t removes a

token from each place p such that (p,t)∈F (i.e. from each

preceding place) and then adds a token to each place r

such that (t,r)∈F (i.e. to each succeeding place).

11

Firing sequences and reachable markings
Notation: MtM’ means that transition t is enabled at

marking M, and firing it leads to marking M’

Starting from the initial marking M0 we may fire a

sequence of transitions t1t2…tn if there are markings

M1,M2, …, Mn such that M0t1M1t2M2…Mn−1tnMn

Then fs = l(t1)l(t2)…l(tn) is a firing sequence, and Mn is a

reachable marking

Firing sequences represent what an observer of the

system would see, and reachable markings are the ones

the system can find itself in. In the FSM terminology,

firing sequences are strings generated/accepted by a PN.

12

Example
Firing sequence: prod dep rem

rem consprod dep

rem consprod dep

rem consprod dep

rem consprod dep

13

Short-hand drawing conventions
 Omit drawing boxes for transitions – draw just labels:

 If a place has one incoming and one outgoing arc, just

draw an arc through it:

 Colours of the labels: input, output, internal; the latter

behave like outputs but are ignored by the environment

a a

ba

ba

ba

ba

14

Short-hand drawing conventions: examples
 Producer/Buffer/Consumer system:

 Inverter circuit:

15

Modelling techniques: basic

Sequential execution of actionsa b

Parallel execution of actions
fork join

b

a

Synchronisation

(joint execution of an action)

a

Testing a condition

without consuming

a token

a

16

Drawing conventions: Read arcs
Testing for the presence of a token without consuming it

is common. Instead of drawing two arcs going in opposite

directions one can either draw a single arc with two

arrowheads, or just a line without arrowheads, so the

following three drawings have the same meaning. Such

arcs are called read arcs.

a a a

17

Modelling techniques: complementary places
 Places p and q in are complementary iff any transition

removing a token from one of them puts a token to the
other

 If p can contain at most one token then creating place q
complementary to p such that q is initially marked iff p
isn’t does not change the behaviour of the PN

 Can use a complementary place to test the negation of
a condition

a

b c

p

? q

a

b c

p

18

Modelling techniques: synchronisation
Example: producer / 3-slot buffer / consumer:

Idea: synchronise the rem action of a slot with the dep

action of the next slot:

19

Modelling techniques: counters
Idea: use multiple tokens on a place to represent a

counter

Example: producer / buffer of capacity 3 / consumer:

Note: the ‘identities’ of items in the buffer are lost!

number of free

spaces in the buffer

number of occupied

spaces in the buffer

20

Modelling techniques: OR-causality
Motivation: quickly react to any of several stimuli

Assumption: all stimuli are eventually provided (if not,

still can use OR-causality, but arbitration will be required

in the ‘reset’ phase)

2-bounded

21

Modelling techniques: choices
Free choice

choice merge

b

a

Asymmetric choice
condition

choice

merge

b

a

choice

Controlled Choice

controlled

choice

merge

b

a

lock

aquire2

aquire1

Arbitration

a

b

release1

release2

22

Modelling techniques: choices
Pooh always liked a little something at eleven o’clock in

the morning, and he was very glad to see Rabbit getting

out the plates and mugs; and when Rabbit said, “Honey

or condensed milk with your bread?” he was so excited

that he said, “Both,” and then, so as not to seem greedy,

he added, “But don’t bother about the bread, please.”

A. A. Milne, “Winnie-the-Pooh”

choice

condensed milk

honey

concurrency

condensed milk

honey
Is a choice really

necessary? Can

it be eliminated?

23

Modelling techniques: choices
 Why are there any choices at all?

 Abstraction of the environment (do not want a detailed model
of the rest of the Universe!) – the ‘implementation’ of the
environment may well be without choices

 Resource contention: have to arbitrate between several clients
trying to use the same resource

 Structural choices: not ‘semantical’, e.g. due to modelling
concurrency by interleaving; can be removed by restructuring
the specification

 Non-deterministic choices: either not ‘real’ and can be
removed (by determinising the specification or making OR-
causality explicit) or indicate that the system does not have
enough information to perform its function (e.g. more inputs
from the environment are required)

24

Modelling techniques: inputs and outputs
 Often actions are partitioned into inputs that are

performed by the environment and outputs that the

system has to produce (and perhaps internal actions)

 Then the PN can be viewed as a contract between the

system and its environment:

 if an input is enabled than the environment is allowed (but not

obliged) to produce it; the environment must not send any

inputs that are not enabled

 if an output is enabled then the system is obliged to produce it

eventually (or it is eventually disabled – such scenarios can be

tricky though); the system must not produce any outputs that

are not enabled

25

Modelling techniques: inputs and outputs
 Example: inverter circuit

 Initial state: i=0, o=1

 Initially i+ is enabled, i.e. the environment may (but

does not have to) change the value of input to 1

 After i+ fires, o- becomes enabled, i.e. the inverter

must eventually change the value of its output to 0

 Meanwhile, the environment is obliged not to change

the value of the input (no input transition is enabled) – it

must wait for o- before doing that

26

Modelling techniques: i/o and choices
 Input / input choices: usually appear due to abstraction of

the environment

 Example: Vending machine models the user’s behaviour

as a free choice between chocolate and coke. The real user

might well have no choice (e.g. wants a drink, not a snack).

However, a detailed model of the user would be infeasible,

so this free choice overapproximates the relevant (from the

vending machine’s point of view) part of user’s behaviour.

 Example: Memory circuit handles read and write requests

from the CPU. This can be modelled / overapproximated by

a free choice, to avoid detailed modelling of the CPU, which

might not have a choice what request to send.

27

Modelling techniques: i/o and choices
 Output / output choices: usually due to arbitration

between clients contending for a shared resource, e.g.:

 which of two threads gets hold of the mutex first?

 which of the two requests for a device gets granted first?

 should a signal from the environment be processed in the

current clock cycle or in the next one?

 If clients’ requests arrive too close in time, the system

has to make an arbitrary decision (cf. Buridan's ass)

 In circuits, this leads to metastability, which cannot be

resolved in bounded time

28

Metastability

Stable:

logic 0

Stable:

logic 1

Metastable

29

Metastability
 Occasionally the system has to make an arbitrary

decision, i.e. either alternative is acceptable, but a choice
has to be made

 Metastability can persist for an indefinitely long time!
 there is a non-zero probability that Buridan's ass will starve to

death

 Issues:
 though the probability of a long delay is small, when repeated

sufficiently many times, a nasty scenario will happen, and will
cause malfunction in some kinds of systems, in particular
synchronous (clocked) circuits – e.g. when this delay gets longer
than a clock cycle (MTBF can be calculated for such systems, and
there are ways to trade off performance for MTBF)

 need to contain metastability (which is analogue by nature) – it
must not propagate to the digital part of the system!

30

D Q D Qsignal

clock

Metastability in circuits
 Synchronous (clocked) circuits: need to arbitrate between a

clock edge and an input from the environment; a synchroniser is

used (may fail occasionally – MTBF):

 Asynchronous circuits: Mutex Element [Seitz, 1979] is used

(never fails but may take indefinitely long to resolve, so try to

remove from the critical path):

31

Modelling techniques: i/o and choices
 Input / output choices: very problematic, usually indicate a

mistake in the design or lack of relevant information /

behaviour

 Intuitively, the system and the environment have to make a

consistent decision in a distributed manner; this cannot be

implemented without allowing for the possibility that both

actions are performed!

 If such a decision is really necessary and the system

collaborates with the environment then it can be delegated

to one of the parties (or to a 3rd party), which will make a

local decision (output/output choice) and notify the other

party (which will see it as an input/input choice)

32

Exception (?): WAIT element
 WAIT element has a read-consume input / output

choice (or rather input / internal choice – but the

difference is not important here)

 Upon activation by ctrl+, waits for sig=1 (may ignore

short spikes) and latches it as ‘clean’ san

 ‘Clean’ ctrl / san handshake controlled by ‘dirty’ sig

33

Exception (?): WAIT element
 Determinised and minimised state graph with an

optional output

34

Exception: WAIT element (cont’d)
 Implementation

 The bubble on sig input can be detached as an inverter

 Early version with a NOR4 gate instead of ‘contemporary’

metastability filter: Fig 6b in J. Kessels and P. Marston:

Designing Asynchronous Standby Circuits for a Low-Power

Pager. Proceedings of the IEEE, Vol. 87, No. 2, 1999

35

Modelling techniques: structural choices
 Some structural choices are not semantical, e.g. due to

concurrency being modelled by interleaving; such

choices can (and should!) be eliminated:

36

Modelling techniques: non-deterministic
choices (benign case)

The lower branch is ‘subsumed’ by the upper one and so

can be removed:

37

Modelling techniques: non-deterministic
choices (malignant case)

 If too much is hidden, cannot determinise / implement:

 In this case can hide either a or b, but not both, as

these signals decide whether x or y is eventually output

38

Modelling techniques: parallel composition
 Large systems are not monolithic: they are designed by

composing smaller blocks, which in turn are composed
from even smaller blocks, etc.

 Compositionality: Semantics / behaviour of a
composed system must be easily predictable from the
semantics / behaviour of its constituent blocks

 Examples:
 Producer/Buffer/Consumer system

 Constructing an algebraic expression by e.g. adding two
simpler expressions

 Constructing a digital circuit by connecting smaller circuits with
wires

39

Modelling techniques: parallel composition
 Problem statement: Given several PNs that share

actions, construct their parallel composition – a PN

that models the overall behaviour, provided that the

shared actions are executed jointly:

PN1 | PN2 | … | PNk

 Desired properties: The order of composition should

not matter, i.e. ‘|’ is commutative and associative:

 PN1 | PN2 = PN2 | PN1

 (PN1 | PN2) | PN3 = PN1 | (PN2 | PN3)

 Hence composing several PNs reduces to a number of

binary compositions

40

Modelling techniques: parallel composition
 Idea: Glue transitions from different PNs that have the

same label (if PNs have several transitions labelled

with e.g. a, glue each such transition in PN1 with each

such transition in PN2)

41

Modelling techniques: parallel composition
 Example:

| =

a

a

c

c

b

a c

b

42

Modelling techniques: parallel composition
When actions are divided into outputs / inputs / internal:

 An action can be an output of at most one PN!

 An action can be an input of 0 or more PNs; gluing two input

transitions produces an input transition

 An output of a PN can be an input of 0 or more other PNs; gluing

an input transition with an output transition produces an output

transition

 The outputs of the composition are all the outputs of all the

components

 Internal actions cannot be shared (can rename them if

necessary to avoid name clashes), and so their transitions are

never glued

43

Modelling techniques: parallel composition
 Example:

| =

a b b c a

b

c

44

Decomposition
 Logic decomposition: splitting large complex-gates to be

able to map them

 System decomposition (our focus): architectural-level

decomposition of a system, so that (small) blocks rather

than the whole (monolithic) system have to be specified

as STGs and synthesised into circuits

 creative process – but some people are good at it

 often many sensible ways to decompose

 blocks with more than ~10 signals are often difficult to design, so

need to keep decomposing

 Decomposition is the inverse of parallel composition

 A bit like factorisation of integers is the inverse of multiplication

45

Example
 Design a circuit that waits for a and then produces b

followed by c (Hint: two buffers connected sequentially)

| =

let’s pretend we don’t know the answer yet

a b b c a

b

c

46

Communication
 Handshakes – usually 4-phase; can load both phases

 Dual-rail req & single-rail ack to pass some info to the

called block (e.g. read/write mode, etc.)

 Single-rail req & dual-rail ack to return some

information to the caller

 Token-ring:

 Exotic stuff like m-of-n for long links

47

Tricks
 Sometimes the block is still large-ish and difficult to

decompose; so need some tricks to reduce the

number of signals and the size of the STG

 Handshake compression: replace req+ → ack+ and

req- → ack- by sig+ and sig-

 e.g. to insert a WAIT element: use w+ instead of ctrl+ →

san+ and w- instead of ctrl- → san-

 Don’t insert sig- unless it’s ‘loaded’

 will violate consistency

 Petrify can add sig- automatically (unsupported by GUI yet)

 e.g. for WAIT element, don’t insert w-

48

Re-synthesis
 Decomposition creates overheads due to new signals

for communication

 If these overheads are not acceptable (e.g.

handshake on a critical path) they can sometimes be

reduced by re-synthesis:

 compute the parallel compositing of two or more blocks,

usually tightly coupled ones (supported by Workcraft GUI)

 hide the handshake signals by turning them to dummies

(can be combined with composition)

 optionally contract the resulting dummy transitions

 synthesise the resulting STG

49

Beware of computational interference!

 Parallel composition at the level of STGs almost

corresponds to connecting circuit blocks by wires…

 …as long as STG contracts are respected

 Computational interference happens when one block

produces a signal that the other block doesn’t expect;

this is masked by STG decomposition

 Conformation is the formal verification property stating

that computational interference cannot happen

50

Beware of computational interference!

 Example:

 Note that the 1st block can produce c+ breaking the

2nd block that is still waiting for b+, and this can

happen at the circuit level

 However the composed STG masks this behaviour,

i.e. does not correspond to the behaviour of the circuit

| =

51

Example: Multiphase buck control

52

Example: Multiphase buck control (cont’d)

53

Example: Multiphase buck control (cont’d)

54

Example: Multiphase buck control (cont’d)

55

Example: Multiphase buck control (cont’d)

