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AMS Trends & Challenges

• Tighter reliability margins

• Concurrent analog and digital analysis

• Short development cycle

Challenges

• Technology scaling

• Multiple power and time domains

• Analog and digital integration

Trends

• Internet of Things

• Mobile computing

• Automotive electronics

Key Drivers

Based on slide from DAC2014 by ANSYS



 

What this means for AMS?

Based on slide from ISQED2013 by Mentor Graphics 

● Achieving better verification of analog 
and digital blocks

• Verifying the increasing amount of digital 
logic in analog designs

• Creating a higher level of abstraction for 
analog and mixed signal blocks

• Automating the manual custom design 
steps 

• Adopting circuit analytics that tell why 
and where the circuit is failing to perform 



 

Why Asynchronous Logic?

• Insensitive to delays
• Robust to process-voltage-temperature
• Average case performance
• Low power consumption and EMI



 

Why Asynchronous Logic?

• Insensitive to delays
• Robust to process-voltage-temperature
• Average case performance
• Low power consumption and EMI
• Incompatible with commercial EDA tools



 

Workcraft

● Modeling with signal transition graphs (STG)
● Formal verification of STG models 
● Logic synthesis of asynchronous circuits

Available at http://workcraft.org/

http://workcraft.org/


 

Why Formal Verification?

• Increased robustness of the system
• Abstract modeling
• Reduced need for conventional simulation



 

Why Formal Verification?

• Increased robustness of the system
• Abstract modeling
• Reduced need for conventional simulation
• Limited tool support



 

LEMA

● Modeling with labeled Petri nets(LPN)
● Automatic model generation
● Property expression and checking
● Model extraction as SystemVerilog netlist

Available at http://async.ece.utah.edu/LEMA/

http://async.ece.utah.edu/LEMA/


 

LEMA Tool Flow



 

Labeled Petri Nets (LPNs)

• Composed of a Petri net and 
labels operating on continuous 
variables and Boolean signals.

• Label types are:
– Enablings
– Delay bounds
– Boolean assignments
– Value assignments
– Rate assignments



 

LPN Model Generation

• Build abstract models of the circuit using:
– Simulation traces.
– Thresholds on the design variables.
– A property to verify.

1. Assign data 
to bins

2. Generate rates 
for binned data

3. Detect discrete 
multi-valued 

variables

4. Generate 
model



 

Switched Capacitor 
Integrator Circuit



 

Simulation Trace



 

Data Binning

• Each data point is assigned a bin based upon thresholds.
• Each bin represents an operating region of the system.



 

Data Binning



 

Data Binning



 

Data Binning



 

Data Binning



 

Rate Calculation

• Rates are calculated for each eligible data point in each bin.
• Low pass filtering smooths edge effects and transitory pulses.
• Minimum and maximum rates are tabulated for each bin.



 
(−652−−1000)/(15.0−0.51)=23.93mV /μs

V out 00
, =[23,24]

Rate Calculation



 
(−608−−913)/(18.0−3.52)=21.06mV /μs

V out 00
, =[21,24]

Rate Calculation



 
No rate calculated.

V out00
, =[19,24 ]

Rate Calculation



 
Final rate calculations after C2=27pF .

V out00
, =[17,24 ]

Rate Calculation



 

DMV Variables

• Stable signals are handled differently to aid 
efficiency.

• Stability is determined by:
– Remaining constant within an epsilon 

value for a specified time.
– Total percent of the entire signal marked 

stable.
• Delay is calculated for each constant value.
• Min/max delay and constant values are 

extracted.



 

Generating an LPN

Initial values={V out=−1000mV ,V in=−1000mV , fail=F} ; Initial rates={V in
, =0,V out00

, =[17,24 ]}



 

Property Language
• delay(d) - wait for d time units.
• wait(b) - wait until boolean expression, b, becomes 

true.
• waitPosedge(b) - wait for a positive edge on b.
• wait(b, d) - wait at most d time units for b to become 

true.
• assert(b, d) - ensure that b remains true for d time 

units.
• assertUntil(b1, b2 ) - ensure that b1 remains true 

until b2 is true.
• if-else - statement for selections.
• always(conditionsList){statements} - continue to 

execute statements until one of the signals in the list 
of variables condistionsList changes, then break out.



 

LEMA DEMO



 

C-element Example

R1C1? R2C2



 

R1C1<R2C2

C-element Example



 

R1C1<R2C2

C-element Example



 

R1C1<R2C2

C-element Example



AMS verification workflow



Buck converter 
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Model generation example

gp_ack = false 
gp = false 
gp_gate = 10000 
gp_gate_rate = 0

Initial conditions:
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Optimized specification
● Concurrency reduction

● Scenario elimination



Verification challenges

• Modules partitioning – trade-off between 
model’s accuracy and verification speed

• False positives – dealing with verification false fail 
states due to overapporximation 

• Properties expression – models properties  
expressed via non-standard language
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