
A Workflow for the Design of Mixed-signal
Systems with Asynchronous Control

Vladimir Dubikhin, Danil Sokolov, Alex Yakovlev, Chris J. Myers

AMS Trends & Challenges

• Tighter reliability margins

• Concurrent analog and digital analysis

• Short development cycle

Challenges

• Technology scaling

• Multiple power and time domains

• Analog and digital integration

Trends

• Internet of Things

• Mobile computing

• Automotive electronics

Key Drivers

Based on slide from DAC2014 by ANSYS

What this means for AMS?

Based on slide from ISQED2013 by Mentor Graphics

● Achieving better verification of analog
and digital blocks

• Verifying the increasing amount of digital
logic in analog designs

• Creating a higher level of abstraction for
analog and mixed signal blocks

• Automating the manual custom design
steps

• Adopting circuit analytics that tell why
and where the circuit is failing to perform

Why Asynchronous Logic?

• Insensitive to delays
• Robust to process-voltage-temperature
• Average case performance
• Low power consumption and EMI

Why Asynchronous Logic?

• Insensitive to delays
• Robust to process-voltage-temperature
• Average case performance
• Low power consumption and EMI
• Incompatible with commercial EDA tools

Workcraft

● Modeling with signal transition graphs (STG)
● Formal verification of STG models
● Logic synthesis of asynchronous circuits

Available at http://workcraft.org/

http://workcraft.org/

Why Formal Verification?

• Increased robustness of the system
• Abstract modeling
• Reduced need for conventional simulation

Why Formal Verification?

• Increased robustness of the system
• Abstract modeling
• Reduced need for conventional simulation
• Limited tool support

LEMA

● Modeling with labeled Petri nets(LPN)
● Automatic model generation
● Property expression and checking
● Model extraction as SystemVerilog netlist

Available at http://async.ece.utah.edu/LEMA/

http://async.ece.utah.edu/LEMA/

LEMA Tool Flow

Labeled Petri Nets (LPNs)

• Composed of a Petri net and
labels operating on continuous
variables and Boolean signals.

• Label types are:
– Enablings
– Delay bounds
– Boolean assignments
– Value assignments
– Rate assignments

LPN Model Generation

• Build abstract models of the circuit using:
– Simulation traces.
– Thresholds on the design variables.
– A property to verify.

1. Assign data
to bins

2. Generate rates
for binned data

3. Detect discrete
multi-valued

variables

4. Generate
model

Switched Capacitor
Integrator Circuit

Simulation Trace

Data Binning

• Each data point is assigned a bin based upon thresholds.
• Each bin represents an operating region of the system.

Data Binning

Data Binning

Data Binning

Data Binning

Rate Calculation

• Rates are calculated for each eligible data point in each bin.
• Low pass filtering smooths edge effects and transitory pulses.
• Minimum and maximum rates are tabulated for each bin.

(−652−−1000)/(15.0−0.51)=23.93mV /μs

V out 00
, =[23,24]

Rate Calculation

(−608−−913)/(18.0−3.52)=21.06mV /μs

V out 00
, =[21,24]

Rate Calculation

No rate calculated.

V out00
, =[19,24]

Rate Calculation

Final rate calculations after C2=27pF .

V out00
, =[17,24]

Rate Calculation

DMV Variables

• Stable signals are handled differently to aid
efficiency.

• Stability is determined by:
– Remaining constant within an epsilon

value for a specified time.
– Total percent of the entire signal marked

stable.
• Delay is calculated for each constant value.
• Min/max delay and constant values are

extracted.

Generating an LPN

Initial values={V out=−1000mV ,V in=−1000mV , fail=F} ; Initial rates={V in
, =0,V out00

, =[17,24]}

Property Language
• delay(d) - wait for d time units.
• wait(b) - wait until boolean expression, b, becomes

true.
• waitPosedge(b) - wait for a positive edge on b.
• wait(b, d) - wait at most d time units for b to become

true.
• assert(b, d) - ensure that b remains true for d time

units.
• assertUntil(b1, b2) - ensure that b1 remains true

until b2 is true.
• if-else - statement for selections.
• always(conditionsList){statements} - continue to

execute statements until one of the signals in the list
of variables condistionsList changes, then break out.

LEMA DEMO

C-element Example

R1C1? R2C2

R1C1<R2C2

C-element Example

R1C1<R2C2

C-element Example

R1C1<R2C2

C-element Example

AMS verification workflow

Buck converter

control

Th_nmos

Th_pmos

buck

V_ref

R
_l

o
a
d

PMOS

NMOS

I_max

gp_ack

oc

uv

gn_ack

gp

gn

over-current (oc)

under-voltage (uv)

Model generation example

gp_ack = false
gp = false
gp_gate = 10000
gp_gate_rate = 0

Initial conditions:
gp_gate_rate

gp_gate_rate

gp_gate_rate

gp_gate_rate gp_gate_rate

gp_gate_rate

0

1

gp

0

1
gp

_a
ck

0

5

10

1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235

P
M

O
S

vo
lta

ge

V

ns

Optimized specification
● Concurrency reduction

● Scenario elimination

Verification challenges

• Modules partitioning – trade-off between
model’s accuracy and verification speed

• False positives – dealing with verification false fail
states due to overapporximation

• Properties expression – models properties
expressed via non-standard language

	Slide 1
	Slide 2
	Slide 3
	page4 (1)
	page4 (2)
	Slide 6
	page6 (1)
	page6 (2)
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

