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Asynchronous Behaviour

• Synchronous vs Asynchronous behaviour in general terms, 
examples:

– Orchestra playing with vs without a conductor

– Party of people having a set menu vs a la carte

• Synchronous means all parts of the system acting globally in 
tact, even if some or all part ‘do nothing’

• Asynchronous means parts of the system act on demand 
rather than on global clock tick

• Acting in computation and communication is, generally, 
changing the system state

• Synchrony and Asynchrony can be in found in CPUs, 
Memory, Communications, SoCs, NoCs etc.



Key Principles of Asynchronous 

Circuit Design



Key Principles of Asynchronous Design

• Asynchronous handshaking

• Delay-insensitive encoding

• Completion detection

• Causal acknowledgment (aka indication or 
indicatability)

• Strong and weak causality (full indication and early 
evaluation)

• “Time comparison” (synchronisation, arbitration)



Why and what is handshaking?

Mutual Synchronisation is via Handshake



Synchronous clocking 

How we 
think

What we 
design



Asynchronous handshaking 

What we 
design

How we 
think

Handshake latch
Handshake CL”Channel” or ”Link”



Handshake Signalling Protocols

Level Signalling (RTZ or 4-phase)

Transition Signalling (NRZ or 2-phase)

One cycle

req

ack

req

One cycle

req

ack

One cycle

ack

(a) (b)



Why and what is delay-insensitive coding?

Data Token = (Data Value, Validity Flag)



Bundled Data 

req

ack

Data

One cycle

req

ack

Data

Return to Zero:

Non-Return-to-Zero

One cycle

req

ack

Data

One cycle



DI encoded data (Dual-Rail)

ack

Data.0

One cycle

Data.1

ack

Data.0Data.1

Logical 1
Logical 0

One cycle

NULL (spacer) NULL

cycle

Data.1

ack

Data.0
Logical 1

Logical 0

cycle cycle

Logical 1 Logical 1

cycle

RTZ:

NRZ:NRZ coding leads to 
complex logic 
implementation; 
special ways to track 
odd and even phases 
and logic values are 
needed, such as 
LEDR



DI codes (1-of-n and m-of-n)

• 1-of-4: 

– 0001=> 00, 0010=>01, 0100=>10, 1000=>11

• 2-of-4:

– 1100, 1010, 1001, 0110, 0101, 0011 – total 6 combinations 
(cf. 2-bit dual-rail – 4 comb.)

• 3-of-6:

– 111000, 110100, …, 000111 – total 20 combinations (can 
encode 4 bits +  4 control tokens)

• 2-of-7:

– 1100000, 1010000, …, 0000011 – total 21 combinations (4 
bits + 5 control tokens)



Why and what is completion detection?

Signalling that the Transients are over



Bundled-data logic blocks  

Single-rail logic

•
•
•

•
•
•

delaystart done

Conventional logic + matched delay

Completion 
is implicit: 
by done 
signal

The delay must 
scale with the worst 
case delay path, 
So … not really self-
timed



True completion detection 

Dual-rail
logic

•
•
•

•
•
•

C done

Completion detection tree

Completion 
detection for one 
dual-rail bit

C

•
•
•

Multi-input C-
element



The Muller C element

C

A

B
Z
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0      0      0
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[van Berkel 91]

Static Logic 

Implementation

C



C-element: Other implementations

A

A

B

B

Gnd

Vdd

Z

A

A

B

B

Gnd

Vdd

Z

Weak inverter

Quasi-StaticDynamic



Why and what is causal acknowledgment?

Every signal event must be acknowledged 
by another event



Causal acknowledgment

a(0)

b(0)
c(0)

x1 (1)

x2 (1)

x3(1)

C-element implementation using simple gates

a+

b+

x1- c+

x2-

x1+

c-

x3-

a+

b+

a-

b-

c+ c-

a-

b- x2+

x3+

Unack’ed transitions x2-
and x3- may cause a 
hazard on output c

However, under Fundamental 
Mode (slow environment) the 
circuit is safe



Principle of causal acknowledgement

a(0)

b(0)

c(0)
x1(1)

x4(0)

x2(0)

x3(1)

a+

b+

a-

b-

c+ c-

C-element implementation using simple gates

a-

b-

x4- x3+ x2- c-

a+

b+

x1- x2+
x3- x1+ c+

x4+

Each transition is 
causally ack’ed, 
hence no hazards 
can appear



Why and what are strong and weak causality ?

Degree of necessity of precedence of some events for 
other events



Strong Causality 

• Petri net transitions synchronising as rendez-vous 

A

C

B

• Logic circuits: Muller C-element (in 0-1 and 1-0 transitions), 
AND gate (in 0-1 transitions), OR gate (in 1-0 transitions)

A     B     C+

0      0      0
0      1      C
1      0      C
1      1      1

Strong precedence

A

B
CC



Weak Causality

• Petri net transitions communicating via places

A

C

B

• Logic circuits: AND gate (in 1-0 transitions), OR gate (in 0-1 
transitions)

A(1->0)

B(1->0)

C(0)
A(0->1)

B(0->1)

C(1)

Weak precedence



Full indication versus Early Evaluation

A.t

A.f

B.t

B.f

C.t

C.f

Dual-rail AND gate
with “early propagation”

Allows outputs to be produced from NULL 
to Codeword only when some (required) 
inputs have transitioned from NULL to 
Codeword  (similar for Codeword to NULL)

C

C

C

C

B.t

A.t
C.t

C.f

A.t

A.f

A.f

B.f

B.t

B.f

Dual-rail AND gate
with full input 
acknowledgement



Why and what is timing comparison?

Telling if some event happened before 
another event



Synchronizers and arbiters

Your system

Input

Your system

Input 1

Input 2

 Synchronizer

Decides which clock
cycle to use for the 

input data

 Asynchronous 
arbiter

Decides the order of 
inputs



Metastability is....

Not being able to decide…

Q

Q

Clock

D

tin

tin -> 0

D

Clock

Request

Processor Clock

Set-up time violated



Typical responses

• We assume all starting points are equally probable
• Most are a long way from the “balance point”
• A few are very close and take a long time to resolve

Clock

Q Output

Clock

D Q
#1 

Q Trigger



Synchronizer

• t is time allowed for the Q to change between CLK a and CLK b

•  is the recovery time constant, usually the gain-bandwidth of the circuit

• Tw is the “metastability window” (aperture around clock edge in which 
the capture of data edge causes a delay that is greater than normal 
propagation delay of the FF)

•  and Tw depend on the circuit

• We assume that all values of tin are equally probable

D Q D Q

CLK a

VALID

#1 #2

dcw

t

ffT

e
MTBF

..

/


CLK b



Two-way arbiter (Mutual exclusion element)

req1

req2

ack2

ack1

(0)

(0)

(1)

(1)

(0)

(0)

Basic arbitration element: Mutex (due to Seitz, 1979)

An asynchronous data latch with 
metastability resolver can be built similarly

Metastability 
resolver



• Understanding metastability is becoming very important as 
analogue and digital domains get closer, and timing 
uncertainty and PVT variations increase

• Arbitration and synchronization are increasing their 
importance due to many-core, timing domains, NoCs, GALS

• Design automation for metastability and synchronization is 
turning from research to practice (Blendix)

Importance of Timing Comparison



Pros…

• People have always been excited by asynchronous design, and motivated by:

– Higher performance (work on average not worst case delays)

– Lower power consumption (automatic fine-grain “clock” gating; 

automatic instantaneous stand-by at arbitrary granularity in time and 
function; distributed localized control; more architectural 
options/freedom; more freedom to scale the supply voltage)

– Modularity (Timing is at interfaces) 

– Lower EMI and smoother Idd (the local “clocks” tend to tick at 

random points in time)

– Low sensitivity to PVT variations (timing based on matched delays 

or even delay insensitive)

– Secure chips (white noise current spectrum)

– Plus, … a lot of scope and fun for research (there are many unexplored 
paths in this forest!)



• So why have async designers been often “crucified” in the past?

– Overhead (area, speed, power)

• Control and handshaking 

• Dual-rail and completion detection costs

– Hard to design
• yes and no, ... It’s different – there are very many styles and variants 

to go and one can easily get confused which is better

– Very few **practical** CAD tools (but many academic tools)

• Tools are quite specific to particular design styles and design niches; 
hence don’ t cover the whole spectrum

• Complexity of timing and performance models  

• Difficulty with sign-off (for particular frequency requirements)

• ... But the situation is improving

– Hard to Test 
• Possible, but not as mature as sync

… Cons



(Some) Models for Asynchronous 

Circuit Design



Models and techniques for asynchronous design

• Models:

– Delay model (inertial, pure, gate delay, wire delay, bounded and 
unbounded delays)

– Models of environment (fundamental mode, input-output)

– Models of switching behaviour (state-based, event-based, hybrid)

• RTL level:

– Data and control paths separate (data flow graphs, FSMs, Signal 
Transition Graphs, Synchronised Transitions)

– Pipeline based (Combinational logic plus registers and latch controllers, 
e.g. micropipelines, gate-level pipelining)

– Process-based (CSP-like, Balsa, Haste, Communicating Hardware 
Processes)

• High-level models

– Flow graphs (Marked graphs, extended MGs), Petri nets, Markov 
Chains

– Behavioural HDLs (C, SystemC)



Gate vs wire delay models

• Gate delay model: delays in gates, no delays in wires

• Wire delay model: delays in gates and wires



Delay models for async. circuits

• Bounded delays (BD): realistic for gates and wires.

– Technology mapping is easy, verification is difficult

• Speed independent (SI): Unbounded (pessimistic) 
delays for gates and “negligible” (optimistic) delays 
for wires.

– Technology mapping is more difficult, verification 
is easy

• Delay insensitive (DI): Unbounded (pessimistic) 
delays for gates and wires.

– DI class (built out of basic gates) is almost empty

• Quasi-delay insensitive (QDI): Delay insensitive 
except for critical wire forks (isochronic forks).

– In practice it is the same as speed independent

BD

SI  QDI

DI

37



Control Logic

• Control specification based on Petri 
nets (Signal Transition graphs)



Control specification

A+

B+

A-

B-

A

B

A input

B output

Timing DiagramSignal Transition Graph 

(STG)



Control specification

A+

B+

A-

B-

A B



Control specification

A+

B-

A-

B+

A B



Control specification

A+

C-

A-

C+
A

C

B+

B- B

CC



Control specification

A+

C-

A-

C+

B+

B-

CCC

A

B



VME bus example using Petri nets

Device

LDS

LDTACK

D

DSr

DSw

DTACK

VME Bus
Controller

Data

Transceiver

Bus
DSr

LDS

LDTACK

D

DTACK

Read Cycle



STG for the READ cycle

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

LDS

LDTACK

D

DSr

DTACK

VME Bus
Controller



Choice: Read and Write cycles

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

DTACK-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw-

DTACK-

LDS-

LDTACK-



Choice: Read and Write cycles

DTACK-

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw-



Workcraft tool

• Workcraft is a software package for graphical edit, analysis, 
synthesis and visualisation of asynchronous circuit behaviour

• Petrify plus a few other tools are part of it as plug-ins

• It is based in Java tools

• Can be downloaded from 
http://workcraft.org/wiki/doku.php?id=download

• And installed in 10 minutes.

• There is a simple to use tutorial for that

http://workcraft.org/wiki/doku.php?id=download


Some references
• General Async Design: J. Sparsø and S.B. Furber, editors. Principles of 

Asynchronous Circuit Design, Kluwer Academic Publishers, 2001. (electronic 

version of a tutorial based on this book can be found on: 

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/855/pdf/imm855.p

df 

• Async Control Synthesis: J. Cortadella, M. Kishinevsky, A. Kondratyev, 

L. Lavagno, and A. Yakovlev. Logic Synthesis of Asynchronous Controllers 

and Interfaces. Springer-Verlag, 2002. (Petrify software can be downloaded 

from: http://www.lsi.upc.edu/~jordicf/petrify/) 

• Arbiters and Synchronizers: D.J. Kinniment, Synchronization and 

Arbitration in Digital Systems, Wiley and Sons, 2007 (a tutorial on arbitration 

and synchronization from  ASYNC/NOCS 2008 can be found: 

http://async.org.uk/async2008/async-nocs-slides/Tutorial-Monday/Kinniment-

ASYNC-2008-Tutorial.pdf) 

• Asynchronous on-chip interconnect: John Bainbridge, Asynchronous 

System-on-Chip Interconnect, BCS Distinguished Dissertations, Springer-

Verlag, 2002 (electronic version of the PhD thesis can be  found on: 

http://intranet.cs.man.ac.uk/apt/publications/thesis/bainbridge00_phd.php) 
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Asynchronous Control Logic 

Synthesis from STGs: Basics



x

y

z

x+

x-

y+

y-

z+

z-

Signal Transition Graph (STG)

x

y

z

xyz-example: Specification



x

y

z

x+

x-

y+

y-

z+

z-

Token flow



x+

x-

y+

y-

z+

z-

xyz

000
x+

100
y+z+

z+y+

101 110

111

x-

x-

001

011
y+

z-

010

y-

State graph



x z x y  ( )

y z x 

z x y z  

Next-state functions

xyz

000
x+

100
y+z+

z+y+

101 110

111

x-

x-

001

011
y+

z-

010

y-



x

z

y

Complex Gate netlist

x z x y  ( )

y z x 

z x y z  



Circuit synthesis

• Goal:

– Derive a hazard-free circuit
under a given delay model and
mode of operation



Speed independence

• Delay model

– Unbounded gate / environment delays

– Certain wire delays shorter than certain paths in the 
circuit

• Conditions for implementability:

– Consistency

– Complete State Coding

– Output-Persistency



Implementability conditions

• Consistency

– Rising and falling transitions of each signal alternate in 
any trace

• Complete state coding (CSC)

– Next-state functions correctly defined

• Output-Persistency

– No event can be disabled by another event (unless they 
are both inputs)



Implementability conditions

• Consistency + CSC + output-persistency

• There exists a speed-independent circuit that implements 
the behavior of the STG

(under the assumption that ay Boolean function can 
be implemented with one complex gate)



Persistency

100 000 001
a- c+

b+ b+

a

c
b

a

c

b

is this a pulse ?

Speed independence  glitch-free output behaviour under any delay



Complete State Coding (CSC) 

Conflict Resolution



Example: VME Bus Controller

lds-d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+



Example: CSC conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’



Example: Resolving the conflict

lds-

d-

ldtack-

ldtack+ dsr-dtack+d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

Idea: Insert csc+ into the core and csc- outside the core to break 
the balance

Note: Cannot delay inputs!

Conflict core



Example: Resolving the conflict

lds-d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+csc+

csc-



Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

001000

ldtack- ldtack- ldtack-

000000 100000

lds- lds- lds-

011000 010000 110000

lds+

ldtack+

d+

dtack+dsr-

d-

011100 010100 110100

011111 111111 110111

110101

100101

011110

csc+

csc-

100001

M’’ M’



Core map 

Core1
Core2 A1

A2
A3

Core3

• Cores often overlap

• High-density areas are good candidates for signal 
insertion

• Analogy with topographic maps



csc-

Example: core map 

csc+



Concurrency reduction

Introduces a new arc in the STG: a  b

Note: Must not delay inputs, i.e. b cannot be an input!

Note: Changes the behaviour, impacts the environment!

Heuristic: Try not to introduce new triggers of b, e.g. if there is an 
arc a+  b+ then a-  b- is preferred

Used for resolving CSC conflicts and circuit simplification

‘Drag’ some events into the core to break the balance:



Example: Resolving the conflict

lds-

d-

ldtack-

ldtack+ dsr-dtack+d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

May be problematic!



Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’



Relative timing assumptions
• “This event will happen faster than that one”

• Break speed-independence, and generally problematic

• Similar to concurrency reductions, but the introduced arcs are 
special, in particular they don’t trigger signals

• Can “delay” inputs

lds-

d-

ldtack-

ldtack+ dsr-dtack+d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110



Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’



Comparison of the methods
• Signal insertions – paracetamol

  behaviour is preserved

  inserted signals have to be implemented

• Concurrency reductions – antibiotic

  no new signals

  reduced state graph and so more don’t-cares in minimisation tables

  change the behaviour: need to be careful if input  output (even indirectly) –
this puts a new assumption on the environment!

  can introduce deadlocks: Circuit: a b & Environment: b  a

• Timing assumptions – surgery

  no new signals

  reduced state graph and so more don’t-cares in minimisation tables

  break speed-independence

  require deep understanding of theory and the circuit’s behaviour

  introduce layout constraints, and need extensive validation

  fragile due to variability (manufacturing, temperature, voltage, etc.)



Formal Verification of 

Asynchronous Circuits



TWO kinds of verification

1. Verification of the STG specification

– there is no circuit yet, just an STG specification

– check if the STG makes sense

– check if the STG can be implemented as an SI circuit

2. Verification of the circuit

– given a gate-level implementation of a circuit and 
an STG modelling the behaviour of the 
environment, check if the circuit is correct



Verification of STG specification

Standard PN properties:

• boundedness / safeness – a digital circuit has finitely 
many reachable states

• deadlock-freeness

• various custom reachability properties, e.g. mutual 
exclusion



Verification of STG specification

Consistency: in each execution, the rising and falling 
edges of each signal must alternate, always starting from 
the same edge – reduces to a reachability property

Intuition: at any reachable state the value of each signal 
is binary



Verification of STG specification
Output-persistency: an enabled output must not be disabled by 
another signal firing first

Intuition: disabling and enabled output can lead to a non-digital 
pulse on the corresponding gate output

input / input choices: no OP violation, usually appear due to 
abstraction of the environment

input / output choices: OP violation, very problematic –
usually a mistake

output / output choices: OP violation, 
usually due to arbitration; 
implementable using a mutex – can be 
‘factored out’ into the environment to 
ensure OP



Verification of STG specification
Complete State Coding (CSC): If two reachable states have the 
same values of all signals then they should enable the same 
outputs; two states violating this property are said to be in CSC 
conflict

Intuition: the circuit can only ‘see’ the signal values (not the 
tokens in the STG!), and these should be sufficient to determine 
which outputs to produce

Implementability property – CSC conflicts do not indicate that the 
STG is wrong; they can be resolved automatically



Example: CSC conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’



Verification of the circuit
Converting a gate-level circuit to an STG:
• Represent each signal s by two places, ps=0 and ps=1; exactly one 

of them is marked at any time, representing the current value of s

• Since there is no information about the environment’s behaviour, 
it is taken to be the most general (i.e., it can always change the 
value of any input); this is modelled for each input signal i by 
adding transitions pi=0i+pi=1 and pi=1i−pi=0

• For each output o with the next-state function [o]=E, compute 
the set and reset functions [o]=E|o=0 and [o]=E|o=1 as 
minimised DNF 

• For each term m of the set function, add a transition po=0o+
po=1, and for each literal s (resp. s) in m, connect o+ to ps=1
(resp. ps=0) by a read arc; a similar process is used to define the 
transitions o− using the reset function



Example: modelling a C-element

• This PN has more behaviour than the 
specification of C-element

• Not output-persistent: after in1+ in2+ the 
output out+ can be disabled by in1- or 
in2-, i.e. there is a hazard

• This is because the circuit (and thus this 
STG) lacks information about the 
environment’s behaviour!

• The circuit works correctly in an 
environment that fulfils the original 
contract

[out] = out·(in1 + in2) + in1·in2
[out] = 0·(in1 + in2) + in1·in2 = in1·in2
[out] = (1·(in1 + in2) + in1·in2) =
(in1 + in2 + in1·in2) = (in1 + in2) =
in1·in2



Gate-level modelling: Verification
Gate-level circuit has no information about its 
environment, so naïve verification will always reveal 
hazards in any non-trivial circuit with inputs. Hence 
need to supply the environment’s behaviour during 
verification: Assuming the environment fulfils the 
contract, the circuit must:
• be free from hazards: no output can be disabled by another 

signal (except in mutex)

• conform to its environment, i.e. never produce an unexpected 
output – the circuit must fulfil its contract too

• be deadlock-free

• etc.



Gate-level modelling: Verification
Problem: how to restrict the behaviour of the circuit by the 
behaviour of the environment to verify the properties?

Idea: use parallel composition! First, convert the circuit into an 
STG and then compose the latter with the mirror (i.e. inputs and 
outputs are swapped) of the original STG spec:

|

mirror



Parallel composition
• Idea: Fuse transitions from different STGs that have the same 

label (if STGs have several transitions with the same label, fuse 
each such transition in STG1 with each such transition in STG2)

• Example:

| =



Example: C-element
Can a C-element be implemented by the following circuits?

long wire

isochronic fork

fork



Under the Bonnet of Workcraft



PUNF – parallel unfolder

• Tool for building Petri net unfoldings

• Utilises multiple processor cores

• Unfoldings alleviate the state space explosion
problem – the number of reachable states is 
generally exponential in the size of the 
specification

• Works very well for asynchronous circuits due to 
high concurrency and small number of choices –
an ideal case for unfoldings



MPSAT – verification and synthesis

• Uses PUNF-generated prefixes as an input –
completely avoids state graph

• Employs a SAT solver for efficiency

• Verifies many relevant properties, like deadlocks, 
CSC, etc.

• Supports REACH – a language to specify custom 
properties

• Synthesis: CSC resolution, deriving complex-gate, 
gC, stdC implementations, logic decomposition



PCOMP – parallel composition

• Composes several STGs, optionally hiding the 
internal communication, e.g.:

– to compose several modules into one

– to compose a circuit with its environment for 
verification



Logic Synthesis and

Implementation Styles in 

Asynchronous Circuits Design



Speed-independence assumptions

• Gates/latches are atomic (so no internal hazards)

• Gate delays are positive and finite, but variable and 
unbounded

• Wire delays are negligible (SI)

• Alternatively, [some] wire forks are isochronic (QDI), i.e. 
wire delays can be added to gate delays

F
instant

evaluator

delay

…



SI decomposition

G

…

H1

Hk

…
…

delay

delay

delay

F
instant

evaluator

delay

…

Hazards can be introduced 
due to these delays!



Gates & latches

• Good citizens: unate gates/latches, e.g. BUFFER, AND, 
OR, NAND, NOR, AND-OR, OR-AND, C-element, SR-
latch, RS-latch

– Output inverters (‘bubbles’) can be used liberally, 
e.g. NAND, NOR, as the invertor’s delay can be 
added to the gate’s delay

– Input inverters are suspect as they introduce 
delays, but in practice are ok if the wire between 
the inverter and the gate is short

• Suspects: binate gates, e.g. XOR, NXOR, MUX, D-latch 
– may have internal hazards, but may still be useful



Logic synthesis

• Encoding (CSC) conflicts must be resolved first

• Several kinds of implementation can then be derived 
automatically:

– complex-gate (CG)

– generalised C-element (gC)

– standard-C implementation (stdC)

• Can mix implementation styles on per-signal basis

• Logic decomposition may still be required if the gates 
are too complex



Example: complex-gate synthesis
Code Nxtc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
1
0
0
1
1
1
-

Eqn (a+c)b+d¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

)()()( sOutsCodesNxt zzz 
a
b

(a+c)b+d¯ cd

The size of this Boolean expression 
is not limited!



Support, triggers and context
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

a
b (a+c)b+d¯ cd

Signals that are the inputs of 
the gate producing a signal 
form its support, e.g. the 
support of c is {a,b,c,d}. 
Supports are not unique in 
general.

Signals whose occurrence can 
immediately enable a signal are 
called its triggers, e.g. the 
triggers of c are {b,d}. Triggers 
are unique, and are always in 
the support.

Signals in the support which are 
not triggers are called the context, 
e.g. the context of c is {a,c}. 
Context is not unique in general.

support = triggers + context



Example: gC implementation
Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

Eqn ab+d b¯ ¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101









































otherwise

1)(if0

1)(if1

)(

otherwise

0)(if0

1)(if1

)( sNxt

sOut

sResetsNxt

sOut

sSet z

z

zz

z

z

a
b
d

ab+d¯

cС

b b

+

–
Implemented as pull-up and pull-down networks of transistors 
and a ‘keeper’; assumed to be atomic



Example: stdC implementation
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

‘Monotonic cover’ 

constraints

Eqn abc+d b̄¯

b b

cС

a
b
d

ab+d¯

hazard due to a 
new delay ¯

b b

cС

a
b
d

abc+d¯ ¯



Logic Decomposition

• Often complex-gates are too complex to be mapped to a gate 
library, and so logic decomposition is required

• Cannot naïvely break up complex-gates – this is likely to 
introduce hazards (at least, timing assumptions are required)

• Decomposition is one of the most difficult tasks – no 
guarantee that automatic decomposition will succeed

• Manual changes in the STG may be required:

– identify the most complex gates

– try some concurrency reductions

– try to decompose your circuit into smaller blocks

– ‘be creative’


