
dsr

dtack

d

lds

ldtack

Timing diagram for the read mode

dsw

dtack

d

lds

ldtack

Timing diagram for the write mode

Synthesis and verification of VME bus controller
A controller for VME bus [http://en.wikipedia.org/wiki/VME bus] provides an interface between a data bus and a slave
device, as shown in the following diagram.

dsw

dsr

dtack

d

lds

ldtack

VME bus
controller

transceiver

device

bus

The controller has two modes of operation: reading from the device into the bus (activated by dsr+) and writing
from the bus into the device (activated by dsw+).

In the reading mode, a request to read data form the device is made through lds+. When the device has the data
ready and this is acknowledged by ldtack+, the controller opens the transceiver by d+ and notifies the bus that data
is ready for transfer by dtack+. After the read operation is complete, all the signals return to the initial state.

In the writing mode, once the data is stable on the bus, the transceiver is opened by d+, and the write request is
made by lds+. When the device acknowledges the receipt of data by ldtack+, the transceiver is closed with d-, thus
isolating the device from the bus, and the bus is notified that the write operation is complete by dtack+. After that
all the signals return to the initial state.

These two modes of VME control are captured by the following timing diagrams.

.

.

Modelling

Model the read mode of VME controller with an STG. Create a new STG work called stg-vme-read and capture the
sequence of events of the corresponding timing diagram.

Do the same for the write mode of VME bus control, in a separate STG work called stg-vme-write.

The result should be similar to the following STGs.

http://www.workcraft.org/start
http://en.wikipedia.org/wiki/VME%20bus

STG for read operation STG for write operation

The two STGs describe the behaviour of the same circuit and need to be combined into one specification by
merging their initial states. Create a new STG work called stg-vme-read_write and copy-paste the STGs from stg-
vme-read and stg-vme-write works into it. Merge places p1r and p1w into a single place by first selecting them (hold
Shift and click them with the mouse) and then using the Transformations→Merge selected places menu item.
Rename the resulting place to p1. Similarly, merge p2r and p2w and rename the resulting place to p2. The result
should look as follows.

Combined STG for read and write scenarios

Note that place p2 is a controlled choice whose decision is determined by the free choice place p1.

Note the concurrency between the transitions resetting the device (lds- and ldtack-) and the new
requests from the bus (dsr+ and dsw+): A new request can arrive while the device is still resetting,
thereby allowing concurrent operation of the bus and the device. This concurrency is the “meaning
of life” of VME bus controller.

Optional simplification

Once the initially marked places are merged, one can notice that transitions ldtack-, lds- and
dtack- occur in both branches of the choice and can be merged. Here is the simplified STG.

Simplified STG for read and write scenarios

Validation and formal verification of the STG specification

Validation

Activate the simulation tool and exercise the obtained STG model to better understand the behaviour of

VME bus controller. Click one of the enabled signal transitions (they are highlighted in orange) to fire it. Note that
the sequence of fired transitions is recorded in the simulation trace that is somewhat similar to the original timing
diagram. Check that the simulation traces correspond to the intended behaviour of VME bus controller.

Formal verification

Verify that the STG specification satisfies the following properties using Verification menu:

Deadlock freeness – every reachable marking enables at least one transition.

Consistency – the '+' and '-' transitions of every signal alternate in every execution, always starting with the
same sign.

Input properness – an input cannot be disabled by an output or internal signal, and cannot be triggered by an
internal signal.

Output persistency – an enabled output or internal signal cannot be disabled by any other signal.

These are basic soundness properties which should be satisfied by most models – Verification menu has an entry
that can check all these properties with a single click.

Now check whether the STG satisfies the Complete State Coding (CSC) property using Verification→Complete
State Coding (all cores) [MPSat] menu item. This STG does not have CSC, which means there are two reachable
states that have the same value of all signals but enable different outputs. These states are said to be in CSC conflict.

Specifications with CSC conflicts cannot be directly implemented as circuits. One way of resolving CSC conflicts
is to insert new internal signals into the STG. These internal signals add memory into the circuit helping it to trace
the current state. More about CSC conflicts and resolving them can be found in another tutorial.

Synthesis

Note that the synthesis solutions shown in this section are not unique and you may get a slightly
different results.

Resolve the CSC conflicts automatically using Petrify via Tools→Encoding conflicts→Resolve CSC conflicts
[Petrify] menu. Petrify will insert a new internal signal csc0 distinguishing between conflicting states. The result
could look like the following STG:

The obtained STG specification has CSC and can now be synthesised into an asynchronous circuit. A complex-gate
solution obtained via Synthesis→Complex gate [MPSat] is as follows circuit-vme-cg.work (5.33 KiB) :

This solution uses complex gates that do not usually exist in real gate libraries. Such gates need to be decomposed,
so they can be mapped into the existing library gates – this is done by technology mapping. Note that speed-
independence of the circuit must be preserved during decomposition.

The library of available gates can be passed to Workcraft in SIS GenLib format via Digital circuit→Gate library for
technology mapping option in global settings (Edit→Preferences…). By default libraries/workcraft.lib is used.
It defines a representative set of gates found in several modern gate libraries and also C-elements and uses a

http://www.workcraft.org/tutorial/synthesis/csc-resolution/start
http://www.workcraft.org/_media/tutorial/synthesis/vme/circuit-vme-cg.work

generalised naming convention for gates and pins.

The results of technology mapping into libraries/workcraft.lib gate library via Synthesis→Technology
mapping [MPSat] is as follows circuit-vme-tm.work (9.3 KiB) :

A circuit can be exported to Verilog via File→Export…→.v (Workcraft Verilog serialiser) menu.
By default the produced Verilog uses the names of gates and pins as they are defined in the
GenLib file. These names can be substituted by providing a conversion file in Digital
Circuit→Substitution rules for export global preferences. For example, libraries/workcraft-
tsmc_ghp.cnv file has rules to convert librarys/workcraft.lib gates to match the naming
convention of TSMC GHP library.

Verification of the circuit implementation

Make sure that the original STG describing the contract with the environment and the circuit model is set up:

In the circuit editor make sure that no components are selected (click on the editor canvas).

In the property editor the Environment URI property should point to the work file with the original STG

http://www.workcraft.org/_media/tutorial/synthesis/vme/circuit-vme-tm.work

specification.

For circuits synthesised within Workcraft this property is automatically set up to the STG that was
used for synthesis, i.e. in this case to the STG with internal signals inserted to resolve CSC
conflicts. You should modify it to point to the original STG.

Use the Verification menu to verify that the circuit implementation is:

deadlock-free;

hazard-free;

conforms to the original STG specification.

All these verification steps can be run via Verification→Conformation, deadlock and hazard (reuse unfolding)
[MPSat] menu.

In theory, synthesised circuits are correct-by-construction. In practice, the synthesis tools are very
complicated and may have bugs, so formally verifying the circuits is essential. This is especially
true if the circuit was edited manually.

Initialisation

Initialisation (or reset) of a speed-independent circuit is a crucial part of the design process because a circuit can
malfunction if its initial state is incorrect. There are several ways of circuit initialisation, that are usually used in
combination:

Rely on the initial state of the circuit inputs that propagate through the logic gates to initialise the internal
and output signals.

Substitute sequential gates with their set/reset counterparts that are initialised to 1/0 respectively.

Insert additional gates to explicitly initialise the internal and output signals.

Use the Initialisation analyser tool to decide how to properly reset the VME bus controller obtained by

technology mapping.

The wires and pins whose initial state is guaranteed to be 0 or 1 are coloured blue or red respectively; initially
undefined wires and pins are not colourised.

Let us assume that the circuit inputs are guaranteed to be in a correct state (all zeros) by the environment – click on
each input port to indicate this. Those gates that are initialised correctly through the primary inputs are highlighted
green.

http://www.workcraft.org/_detail/help/editor_tools-initialisation_analysis.png?id=tutorial%3Asynthesis%3Avme%3Astart-handouts

Now let us rely on C-element U21 being explicitly reset – click its output pin to indicate this. Notice that the output
pin has a diamond shape now. This is to visualise the forced initialisation of the gate output (e.g. by replacing it by
a C-element with explicit reset).

All the gates should be highlighted green now indicating that they are transitively initialised to the correct state.

If there were initialisation conflicts, the problematic gates would be highlighted in orange.

