
Synthesis and verification of a buck controller
Buck converter [http://en.wikipedia.org/wiki/Buck converter] is a voltage step down and current step up converter.
It comprises an analogue buck and its digital control logic as shown in the following diagram. Your task in
this tutorial is to formally specify, synthesise and verify the control circuitry of the buck.
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The controller switches the power regulating PMOS and NMOS transistors ON and OFF as a reaction to
under-voltage (UV), over-current (OC) and zero-crossing (ZC) conditions. These conditions are detected and
signalled by a set of specialised sensors implemented as comparators of measured current and voltage levels
against some reference values (I_max, V_0, V_ref). Note that the gp and gn signals are buffered to drive the
very large power regulating transistors (occupy more than 50% of the buck area) and their effect on the buck
can be significantly delayed. Therefore, the controller is explicitly notified (by the gp_ack and gn_ack signals)
when the power transistor threshold levels (Th_pmos and Th_nmos) are crossed.

The operation of a buck is usually specified in an intuitive, but rather informal way, e.g. by enumerating the
possible sequences of detected conditions and describing the intended reaction to them, as in the following
phase diagram.
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This specification shows the alternation of the UV and OC conditions which are handled by switching the
power regulating PMOS and NMOS transistors of the buck ON and OFF. Detection of the ZC condition after
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UV does not change this behaviour, however, if ZC is detected before UV then both the PMOS and NMOS
transistors remain OFF until the UV event.

It is important to note that in order to avoid a short-circuit the PMOS and NMOS transistors of the buck must
never be ON at the same time.

Exercise 1: Modelling

According to the phase diagram there are three distinctive scenarios to capture:

no ZC – UV happens without ZC;

late ZC – UV is followed by ZC;

early ZC – UV happens after ZC.

Let us first capture the no ZC scenario as an STG.

Detailed instructions

The resulting STG listing the sequence of signal events for this scenario is shown in the following diagram.
Save this model as stg-buck-scenario1_no_zc file.

The scenario for late ZC is formalised in a very similar way. Both phases of ZC just happen concurrently with
switching NMOS transistor OFF and PMOS transistor ON.

Copy and save the no ZC scenario with new name stg-buck-scenario2_late_zc.

Create two input signal transitions zc+ and zc-.

Connect uv+ to zc+.

Connect zc+ to zc-.

Connect zc- to uv-.

The resulting STG should look similar to the following diagram. Do not forget to save the work!

The scenario for early arrival of ZC is a bit different. Here the NMOS transistor needs to be switched OFF as
soon as ZC is detected, without waiting for UV. However, switching the PMOS transistor ON is still delayed
till UV condition.

Copy and save the late ZC model under new name stg-buck-scenario3_early_zc.

Delete incoming and outgoing arcs of uv+ and zc+ transitions (just select the arc and press Delete ).

Connect place p0 to zc+ and zc+ to gn-.

Connect zc+ to uv+ and uv+ to gp+.



Connect gp+ to zc-.

Rearrange transitions to make the STG look nicer (using the selection tool) and save the work.

The STG for early ZC scenario should look similar to the following diagram.

In order to produce an implementation capable of handling all the scenarios, these STGs need to be merged
into a single specification. One can see that all three STGs have ‘compatible’ initial states, that is all common
input and output signals have the same initial values. Therefore one can merge the initially marked places in
the three STGs and obtain a combined specification for buck control.

Create a new STG work called stg-buck-scenarios_merged.

Copy and paste the three scenarios into it.

Select the three initially marked places (by holding Shift  and clicking them with the mouse) and
merge them into a single place using Transformations→Merge selected places.

The STG combining all three scenarios should look like the following diagram. Do not forget to save the
work!

Note that this STG is non-deterministic, e.g. after uv+ fires the STG can end up in either of
the two possible states. Non-determinism is common in scenario-based modelling, and can be
very powerful and expressive. Occasionally, the scenarios may impose conflicting
requirements on the system (e.g. two scenarios may have a common prefix, with one of them
requiring and the other forbidding the circuit to produce a particular output after this prefix).
Such conflicting requirements can be detected during verification. In this model, however,
the scenarios are compatible.

Simplification (optional)



Simplification (optional)

Once the initially marked places are merged, one can notice that three transitions oc- leading to it can also be
merged because their preceding states are ‘compatible’. This process continues with signal event gn_ack+, and
so on, ‘zipping’ the common paths of the STGs together. The simplified STG specification of the buck control
is as follows; save it as stg-buck-simplified file.

Note that this STG is just a cosmetic improvement over the previous one and so this step can be skipped as it
does not affect the verification and synthesis. However, it does improve the visual representation making the
STG more comprehensible, and thus it is important from the designer's perspective.

It is possible to simplify the STG automatically, via the Conversion→Net synthesis [Petrify]
or Conversion→Net synthesis [Petrify with -er option] menu items. However, the layout of
the simplified STG is generated automatically, so the manual simplification is simpler for this
example. However, in less trivial cases automatic simplification can be very useful.

Exercise 2: Validation and formal verification of specification

Validation

Activate the simulation tool  and exercise the obtained STG model. Click one of the enabled signal

transitions (they are highlighted in orange) to evaluate the STG into the next state. Make sure the simulation
traces correspond to those intended by the informal specification of the phase diagram.

Formal verification

Before proceeding to the synthesis step verify that the STG specification satisfies the following properties
using Verification menu:

Deadlock freeness – every reachable marking enables at least one transition.

Consistency – the '+' and '-' transitions of every signal alternate in every execution, always starting with
the same sign.

Input properness – an input cannot be disabled by an output or internal signal, and cannot be triggered
by an internal signal.



Output persistency – an enabled output or internal signal cannot be disabled by any other signal.

These are basic soundness properties which should be satisfied by most models – Verification menu has an
entry that can check all these properties with a single click.

Another property one must verify is that PMOS and NMOS transistors are never ON simultaneously (which
would lead to a short-circuit), i.e. that signals gp and gn are never high at the same time. This custom property
can be formulated as a reachability analysis problem using Reach language:

Open the Custom property definition window by selecting Verification→Custom properties [MPSat]…
menu.

In MPSat settings set the Mode into STG reachability analysis and the Solution into minimise cost
function.

Enter a Reach predicate specifying the short-circuit condition: both gp and gn signals are high – $S"gp"
& $S"gn". Here $S means the value of a signal, "gp" and "gn" are the names of the signals and & is
Boolean AND.

Select unsatisfiable to denote that the property holds if predicate is unsatisfiable.

Save this property as a preset for future use, e.g. under the name short circuit check.

The whole custom property window should look as follows.

When you click the Run button the STG will be searched for a state where the Reach predicate evaluates to
True. If such a state exists then the Reach predicate is satisfiable and the property is violated; else the property
holds. If the property is violated then a trace leading to a problematic state is reported. This trace can be
simulated to diagnose the problem and correct it at the level of STG specification. The minimise cost function
setting ensures that this violation trace is as short as possible, which helps debugging.

Note that the property that signals gp and gn are never high at the same time is not sufficient to guarantee the
absence of short-circuits. Indeed, the PMOS and NMOS transistors are big and slow, and so if e.g. gp+
happens immediately after gn-, a transient short-circuit may be possible even though the property holds. In
fact, the signals gp_ack and gn_ack were introduced specifically to detect the completion of the switching of
the corresponding transistors, making it possible to avoid such short-circuits. Hence, a stronger correctness
property ensuring that gp cannot be high whenever gn or gn_ack is high, and similarly gn cannot be high
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whenever gp or gp_ack is high, can be formulated as ($S"gp" | $S"gp_ack") & ($S"gn" | $S"gn_ack"),
where | is Boolean OR. Verify that this stronger property also holds for the above STG model.

Exercise 3: Synthesis

The STG specification can now be synthesised into an asynchronous circuit implementation either with
MPSat or Petrify back-end tools via Synthesis menu.

Petrify's complex-gate implementation can be obtained via Complex gate [Petrify] menu. Workcraft can
automatically import the synthesised circuit – if this fails then make sure that the Import synthesis result
checkbox in the Edit→Preferences… window under Models→Digital Circuit leaf is enabled.  After some
manual editing the circuit should look as follows:

Note that the solution is not unique and you may get a slightly different one. In particular, instead of the NOR
gate Petrify is likely to output an AND gate with three input ‘bubbles’ – this can be fixed by selecting the
output pin of this gate (do not confuse with the output pin of the overall circuit!) and amending its Set function
property from i1' * i2' * i3' to (i1 + i2 + i3)' (note the use of postfix ' for negation). Save this circuit
with the name circuit-buck-cg-petrify.

Workcraft can export circuits in the Verilog format via the File→Export→.v (Workcraft
Verilog serialiser). Note that a complex-gate implementation is independent on the
technology library, i.e. its gates are not mapped to any library gates.

Exercise 4: Validation and formal verification of implementation

Validation

Activate the simulation tool  and simulate the captured complex gate implementation of the buck

control. Ports, pins and wires are colour-coded: blue means low level and red means high level of the signal.
Excited pins and ports are highlighted in orange.

Make sure that the initial values of all signals are as expected: gn and gn_ack must be high,
and the other signals must be low. Incorrect initial values of signals is a very common
problem in manually edited circuits!

Gate outputs should normally not be excited at the initial state, and at the STG level output
and internal signals should normally not be enabled by the initial marking. The reason is that
most asynchronous circuits produce outputs in response to input stimuli, and are otherwise
quiescent. The exceptions are circuits like oscillators.

Note however that in some synthesis modes where signal insertion is required (e.g. CSC



resolution or logic decomposition with technology mapping) some of the newly inserted
signals can be initially enabled, and the corresponding gates initially excited. In such a case
the designer can change the initial marking of the system by firing these signals, until a
quiescent initial marking is reached – this is always possible provided the initial marking of
the original STG was quiescent. Maybe, one day the tools will do that automatically…

Click an excited pin to toggle its logical value – the circuit will evaluate to the next state where new set of
signals will be enabled. The sequence of signal events is recorded in the simulation trace and can be
subsequently replayed for analysing the circuit's behaviour.

During simulation the user is not bound by the contract specified by the original STG: The
input ports are always excited and one can produce an input that would not be permitted by
the STG. Hence the circuit may exhibit hazards and other problems that cannot occur in a
correct environment. This is intentional, i.e. not a bug but a feature!

Formal verification

For the formal verification the behaviour of the environment must be specified. For a circuit
synthesised by Workcraft from an STG this STG is automatically set as the environment.

This can be checked (and changed if necessary) by activating the selection tool ,

making sure that nothing is selected, and inspecting the Environment URI property in the
Property editor. If the file does not exist then its name is shown in red.

Check the circuit for hazards, deadlocks and verify that it conforms to the environment specification. All these
verification steps can be run via Verification→Conformation, deadlock and hazard (reuse unfolding) [MPSat]
menu.

In theory, synthesised circuits are correct-by-construction. In practice, the synthesis tools are
very complicated and may have bugs, so formally verifying the circuits is essential. This is
especially true if the circuit was edited manually.

Exercise 5: Alternative implementations (optional)

When synthesising a complex-gate implementation with MPSat (via Complex gate [MPSat] menu) the circuit
looks as follows (after some manual editing):



Note that the gate computing gp now has feedback, which suggests that it may be advantageous to implement
gp by a latch (i.e. a state-holding element) rather than a combinational gate. Below we explore some such
implementations.

Standard-C implementation

The standard-C architecture (a.k.a. “monotonic covers”) is shown in the picture below. It uses a C-element as
the state-holding element that is driven by two combinational gates computing the Set and (inverted) Reset
functions of the implemented signal. The Set and Reset functions are mutually exclusive, i.e. they are never 1
at the same time; hence, due to the Reset function being inverted, the inputs of the C-element cannot be 10
(combinations 00, 01, and 11 are possible).

...
...

The standard-C implementation of the buck STG can be synthesised using Synthesis→Standard C-element
[MPSat] menu. By inspecting the resulting circuit (not shown) one can see that:

There is no benefit in implementing gn using standard-C architecture, as the original complex-gate
implementation is simpler. (In some situations, e.g. if there are only 2-input gates/latches in the gate
library, this standard-C implementation may come useful.)

The standard-C implementation of gp is nicer than the complex-gate one, in particular it does away
with that ugly 4-input gate that may be absent from the gate library.

By selecting the complex-gate implementation of gn and the standard-C one of gp the following hybrid circuit
is obtained:

Do not forget to verify this circuit w.r.t. the original STG as described above for the
complex-gate implementation!

Logic decomposition and technology mapping



Logic decomposition and technology mapping

Complex-gate and standard-C syntheses are oblivious to the gate library – the implementations they yield are
Boolean functions of arbitrary complexity. These functions are often too large to be implemented by a single
gate available in the gate library. Unfortunately, breaking up a complex-gate into smaller ones, when
performed naïvely, generally yields an incorrect circuit – this happens due to the delays associated with the
outputs of the newly introduced gates. In fact, logic decomposition in the context of speed-independent
circuits is a very difficult problem, that cannot always be solved. Petrify and MPSat backend tools do a good
job in many situations, but occasionally they fail to converge to a solution and a manual intervention by the
designer is required.

Workcraft provides several gate libraries in the SIS genlib format, and the user can easily add
a new library. The default library is workcraft.lib, and this library will be used below.
However, it is possible to tell Workcraft to use another library by amending the Gate library
for technology mapping setting in the Edit→Preferences… window under the Digital Circuit
leaf.

The decomposed and mapped implementation of the buck STG can be synthesised using
Synthesis→Technology mapping [Petrify] or Synthesis→Technology mapping [MPSat] menu. E.g. Petrify's
solution, after some manual editing, is as follows ( note that the solution is not unique and you may get a
slightly different one ):

The circuit is now mapped – the gate labels correspond to the gate names in the library. The two inverters are
shown with a dotted line through – this is because they have the Zero delay property expressing the
assumption that their delays are negligible. This is usually unproblematic as long as such input inverters are
placed next to the main gate, but in some situations this assumption may be questionable; moreover, this
assumption introduces extra constraints that have to be satisfied during placing and routing.

Let us try to decompose the implementation of gp into gates/latches with at most two inputs. In the
Edit→Preferences dialog, select External tools→MPSat synthesis and tick the Edit additional parameters
before every call checkbox. Then select Synthesis→Technology mapping [MPSat]. A dialog box will pop up
asking for extra command line parameters to pass to MPSat – type -g2 to restrict MPSat to gates/latches with
at most two inputs. The following implementation of gp can then be computed ( note that solution is not
unique and you may get a slightly different one ).



MPSat also finds a decomposition of gn into 2-input gates/latches (as the -g2 option prevents
it from using the a 3-input NOR gate), which is essentially the same as the standard-C
implementation considered above (but it is now mapped). However, the implementation of gn
as a 3-input NOR gate is superior and thus has been retained in the above circuit.

This solution happens to have no input inverters, and so no timing assumptions have to be made. Verify this
circuit w.r.t. the original STG as described above for the complex-gate implementation.

Note that this implementation of gp is not a standard-C implementation, as the signals on the
inputs of the C-element are not mutually exclusive (even with inversions taken into account):
All four possible combinations of these two values are reachable, i.e. these signals cannot be
interpreted as Set and (inverted) Reset functions.

Do not forget to un-tick the Edit additional parameters before every call checkbox (unless
you want to be prompted for extra parameters every time MPSat synthesis is invoked).


