2 Newcastle
University

Logic Synthesis and
Implementation Styles In
Asynchronous Circuits Design

Victor.Khomenko@ncl.ac.uk
School of Computing Science,
Newcastle University, UK

Speed-independence assumptions

« Gates/latches are atomic (so no internal hazards)

————————————————

——| evaluator

\

|

| |
m | I
: | | instant delay)}
| |

|

/

 Gate delays are positive and finite, but variable
and unbounded

 Wire delays are negligible (SI)

« Alternatively, [some] wire forks are isochronic
(QDI), i.e. wire delays can be added to gate delays

2

S| decomposition

—+—| evaluator

Hazards can be
Introduced due to
these delays!

N\

\

1

| |
m |

« ; | instant :

| |

1

/

7/

—-— e - -y,

- - - -

———————————————

Gates & latches

Good citizens: unate gates/latches, e.g. BUFFER,
AND, OR, NAND, NOR, AND-OR, OR-AND, C-
element, SR-latch, RS-latch

= Output inverters (‘bubbles’) can be used
liberally, e.g. NAND, NOR, as the invertor’s
delay can be added to the gate’s delay

= |nput inverters are suspect as they introduce
delays, but in practice are ok if the wire
between the inverter and the gate Is short

Suspects: binate gates, e.g. XOR, NXOR, MUX, D-
latch — may have internal hazards, but may still be
useful

Logic synthesis

 Encoding (CSC) conflicts must be resolved first

« Several kinds of implementation can then be
derived automatically:

= complex-gate (CG)
= generalised C-element (gC)
» standard-C implementation (stdC)

« Can mix implementation styles on per-signal
basis

 Logic decomposition may still be required if the
gates are too complex

Example: complex-gate synthesis

b+ a+ 1000
0100 7~ Yoooo]

Code

0100
0000
c+ C- b+ 1000
0110

- 0010

0110 ¢—>—=9 $1100 | 1100

0010 1110
1111

a- d+ 1101

q else
- — Y
O-= O-= ¢ O

1110 1111 1101 s

2
"
ﬁ

P PRPOORKROOHR

(a+c)b+d

Nxt, (s) = Code, (s) ®Out, (s §E E+c)b+> c
The size of this Boolean /r

expression is not limited!

Support, triggers and context
@ o—)01000

0100 ~— % 0000 o >
d— (a+c)b+d)T C
c+ C- b+
(b Signals that are the inputs
0110 % >0 0 1100 of the gate producing a
0010 signal form its support,
e.g. the support of c is
a- <@ {a,b,c,d}. Supports are not
unique In general.
d- c+ Y
O= O= O
1110 1111 1101
Signals whose occurrence Signals in the support which
can immediately enable a are not triggers are called the

signal are called its triggers, context, e.g. the context of c is

e.g. the triggers of ¢ are {b,d}. {a,c}. Context is not unique in
Triggers are unique, and are general.
always in the support. support = triggers + context

Example: gC implementation

Implerﬁented as pull-up and puII-d(Swn networks of p—

b+ at 1000 [code]set | Reset
O-= @ >0 e o
0100 4 0000 0100 | 1 0
0000 | O -
1000 | O -
C+ C- b+ 0110 | - 0
0010 | O 1
0110% -4 01100 |1100| o© -
0010 1110 - 0
1111 | - 0
a- d+ 1101 | 1 0
else - -
d- c+ 5
O-= O-= _ _
1110 1111 1101 man abrd b
(1 if Out,_ (s)=1 1 ifOut,_(s)=1 _ |
Set,(s)=10 if Nxt,(s)=0 Reset,(s)=10 if Nxt,(5)=1 5 ab+d>
— otherwise — otherwise
b >

transistors and a ‘keeper’; assumed to be atomic

Example: stdC implementation

O< b+ ® a+t)01000 Code| Set_ |Reset_
0100 4 0000 0100 1 0
0000 0 -
_ 1000 0 -
C* ¢ b+ 0110 - 0
. \ 0010 | 0 1
0110 © >0 0 1100 1100 0 -
A 0010 1110 | - 0
1111 - 0
a- d+ 1101 1 0
else - -
- d- O Ct (V) ‘Monotonic cover’
1110 1111 1101 constraints
> hazard dueto [Eqn | 3bd+d| B
a anewdelay g——, —
b— b—| abc+d
d b—
C — C
b — b— b

Logic Decomposition

Often complex-gates are too complex to be mapped to
a gate library, and so logic decomposition is required

Cannot naively break up complex-gates — this is likely
to introduce hazards (at least, timing assumptions are
required)

Decomposition is one of the most difficult tasks — no
guarantee that automatic decomposition will succeed
Manual changes in the STG may be required:

» |dentify the most complex gates

= Try some concurrency reductions

* Try to decompose your circuit into smaller blocks

* ‘Be creative’

10

;25 Newcastle
University

CSC Conflict Resolution

Victor.Khomenko@ncl.ac.uk

Online tutorial available from

http://workcraft.org/

Example: VME Bus Controller

/dtack— | dsr+ — Ids+|\

d- — lds- —| Idtack- |dtack+

dsr- |=— dtack+ |=— d+|“

Example: CSC conflict

o dtack—) dsr+) 10000
00100 00000 §
|ds+
|dtack- |dtack- |dtack-
01100 § facc ~0 — ~O 10010
01000 11000
|ds- |ds- lds- |dtack+
dtack- dsr+ Y
) >0 >0 o)
01110 01010 M? M
d+
dsr- dtack+ ¥

Q=

< O
01111 11111 11011

13

Example: Resolving the conflict

Conflict core

- ldtack-

ldea: Insert csc+ into the core and csc- outside the core to
break the balance

Note: Cannot delay inputs!

Example: Resolving the conflict

dtack- F@=| dsr+ —{ csc+ p——={ Ids+

T ¢ l

d- b—{ lds- —={ Idtack- |dtack+

T l

csc- = dsr- |=— dtack+ |=—d+

Example: Resolving the conflict

o dtack- dsr+ .o CSC+ .o
001000 ¥ ?oooooo 1100000 100001
Idtack- Idtack- Idtack- lds+
dtack- dsr+ Y
O >0 >0 (@)
011000 4 010000 A 110000 A 100101
|ds- |ds- lds- |dtack+
dtack- dsr+ Y
O >0 $ 0
011100 | 010100 |v|” v (110108
d- d+
CSC- dsr- dtack+
O=< O-= O-= O
011110 011111 111111 110111

16

Core map

Cores often overlap

High-density areas are good candidates for
sighal insertion

Analogy with topographic maps

core,
ore,

mAl
A2
A3

Core,

17

18

Concurrency reduction

Introduces a new arc inthe STG: a—b
Note: Must not delay inputs, i.e. b cannot be an input!
Note: Changes the behaviour, impacts the environment!

Heuristic: Try not to introduce new triggers of b, e.q. if
there is an arc a+ - b+ then a- —» b- is preferred

Used for resolving CSC conflicts and circuit simplification
‘Drag’ some events into the core to break the balance:

19

Example: Resolving the conflict

|
i o
155

|
Code(conf’)=10110 1Code(conf”)
|

N O S S S S S S S S - .-

T)
=10110 ?\‘Ids- |dtack-

May be problematic!

Example: Resolving the conflict

o dtack—) dsr+) 10000
00100 } ’ooooo A
|ds+
|dtack- |dtack- |dtack-
01200 o 10010
01000 11000
Ids- Idtack+
Y
) >0 o)
01110 O M’
d+
dsr- dtack+ ¥
- Q= O
01111 11111 11011

21

Relative timing assumptions

 “This event will happen faster than that one”
 Break speed-independence, and generally problematic

« Similar to concurrency reductions, but the introduced
arcs are special, in particular they don’t trigger signals

« Can “delay” inputs

|dtack-

22

Example: Resolving the conflict

o dtack—) dsr+) 10000
00100 00000 §
|ds+
|dtack- |dtack- |dtack-
01100 § Sl =0 — >0 10010
01000 11000
|ds- |ds- lds- |dtack+
dtack- dsr+ Y
01110 01010 M7 M
d+
dsr- dtack+ ¥
01111 11111 11011

23

Comparison of the methods

Signal insertions — paracetamol G &

= © behaviour is preserved Online tutorial:
= @ inserted signals have to be implemented
Concurrency reductions — antibiotic

= © no new signals &
= © reduced state graph and so more don’t-cares in minimisation tables

= @® change the behaviour: need to be careful if input — output (even
indirectly) — this puts a new assumption on the environment!

= @ can introduce deadlocks: Circuit: a— b & Environment: b - a
Timing assumptions — surgery

= © no new signals

= © reduced state graph and so more don’t-cares in minimisation tables
= @ break speed-independence

= @ require deep understanding of theory and the circuit’s behaviour

= @ introduce layout constraints, and need extensive validation

= @ fragile due to variability (manufacturing, temperature, voltage, etc.)

24

http://workcraft.org/

