
Logic Synthesis and

Implementation Styles in

Asynchronous Circuits Design

Victor.Khomenko@ncl.ac.uk

School of Computing Science,

Newcastle University, UK

2

Speed-independence assumptions

• Gates/latches are atomic (so no internal hazards)

• Gate delays are positive and finite, but variable

and unbounded

• Wire delays are negligible (SI)

• Alternatively, [some] wire forks are isochronic

(QDI), i.e. wire delays can be added to gate delays

F

instant

evaluator

delay

…

3

SI decomposition

G

…

H1

Hk

…

…

delay

delay

delay

F

instant

evaluator

delay

…

Hazards can be

introduced due to

these delays!

4

Gates & latches

• Good citizens: unate gates/latches, e.g. BUFFER,
AND, OR, NAND, NOR, AND-OR, OR-AND, C-
element, SR-latch, RS-latch

 Output inverters (‘bubbles’) can be used
liberally, e.g. NAND, NOR, as the invertor’s
delay can be added to the gate’s delay

 Input inverters are suspect as they introduce
delays, but in practice are ok if the wire
between the inverter and the gate is short

• Suspects: binate gates, e.g. XOR, NXOR, MUX, D-
latch – may have internal hazards, but may still be
useful

5

Logic synthesis

• Encoding (CSC) conflicts must be resolved first

• Several kinds of implementation can then be

derived automatically:

 complex-gate (CG)

 generalised C-element (gC)

 standard-C implementation (stdC)

• Can mix implementation styles on per-signal

basis

• Logic decomposition may still be required if the

gates are too complex

6

Example: complex-gate synthesis

Code Nxtc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
1
0
0
1
1
1
-

Eqn (a+c)b+d ¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

)()()(sOutsCodesNxt zzz 
a
b (a+c)b+d ¯ c d

The size of this Boolean

expression is not limited!

7

Support, triggers and context
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

a
b (a+c)b+d ¯ c d

Signals that are the inputs
of the gate producing a
signal form its support,
e.g. the support of c is
{a,b,c,d}. Supports are not
unique in general.

Signals whose occurrence
can immediately enable a
signal are called its triggers,
e.g. the triggers of c are {b,d}.
Triggers are unique, and are
always in the support.

Signals in the support which
are not triggers are called the
context, e.g. the context of c is
{a,c}. Context is not unique in
general.

support = triggers + context

8

Example: gC implementation

Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

Eqn ab+d b ¯ ¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101









































otherwise

1)(if0

1)(if1

)(

otherwise

0)(if0

1)(if1

)(sNxt

sOut

sResetsNxt

sOut

sSet z

z

zz

z

z

a
b
d

ab+d ¯

c С

b b

+

–
Implemented as pull-up and pull-down networks of

transistors and a ‘keeper’; assumed to be atomic

9

Example: stdC implementation
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

‘Monotonic cover’

constraints

Eqn abc+d b ¯ ¯

b b

c С

a
b
d

ab+d ¯

hazard due to

a new delay
¯

b b

c С

a
b
d

abc+d ¯ ¯

10

Logic Decomposition

• Often complex-gates are too complex to be mapped to

a gate library, and so logic decomposition is required

• Cannot naïvely break up complex-gates – this is likely

to introduce hazards (at least, timing assumptions are

required)

• Decomposition is one of the most difficult tasks – no

guarantee that automatic decomposition will succeed

• Manual changes in the STG may be required:

 Identify the most complex gates

 Try some concurrency reductions

 Try to decompose your circuit into smaller blocks

 ‘Be creative’

CSC Conflict Resolution

Victor.Khomenko@ncl.ac.uk

Online tutorial available from workcraft.org

http://workcraft.org/

12

Example: VME Bus Controller

lds- d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+

13

Example: CSC conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+ dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

14

Example: Resolving the conflict

lds-

d-

ldtack-

ldtack+ dsr- dtack+ d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

Idea: Insert csc+ into the core and csc- outside the core to
break the balance

Note: Cannot delay inputs!

Conflict core

15

Example: Resolving the conflict

lds- d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+ csc+

csc-

16

Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

001000

ldtack- ldtack- ldtack-

000000 100000

lds- lds- lds-

011000 010000 110000

lds+

ldtack+

d+

dtack+ dsr-

d-

011100 010100 110100

011111 111111 110111

110101

100101

011110

csc+

csc-

100001

M’’ M’

17

Core map

Core1

Core2 A1
A2
A3

Core3

• Cores often overlap

• High-density areas are good candidates for
signal insertion

• Analogy with topographic maps

18

csc-

Example: core map

csc+

19

Concurrency reduction

Introduces a new arc in the STG: a  b

Note: Must not delay inputs, i.e. b cannot be an input!

Note: Changes the behaviour, impacts the environment!

Heuristic: Try not to introduce new triggers of b, e.g. if
there is an arc a+  b+ then a-  b- is preferred

Used for resolving CSC conflicts and circuit simplification

‘Drag’ some events into the core to break the balance:

20

Example: Resolving the conflict

lds-

d-

ldtack-

ldtack+ dsr- dtack+ d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

May be problematic!

21

Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+ dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

22

Relative timing assumptions

• “This event will happen faster than that one”

• Break speed-independence, and generally problematic

• Similar to concurrency reductions, but the introduced
arcs are special, in particular they don’t trigger signals

• Can “delay” inputs

lds-

d-

ldtack-

ldtack+ dsr- dtack+ d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

23

Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+ dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

24

Comparison of the methods
• Signal insertions – paracetamol

  behaviour is preserved

  inserted signals have to be implemented

• Concurrency reductions – antibiotic

  no new signals

  reduced state graph and so more don’t-cares in minimisation tables

  change the behaviour: need to be careful if input  output (even
indirectly) – this puts a new assumption on the environment!

  can introduce deadlocks: Circuit: a b & Environment: b  a

• Timing assumptions – surgery

  no new signals

  reduced state graph and so more don’t-cares in minimisation tables

  break speed-independence

  require deep understanding of theory and the circuit’s behaviour

  introduce layout constraints, and need extensive validation

  fragile due to variability (manufacturing, temperature, voltage, etc.)

http://workcraft.org/

