
Logic Synthesis and 

Implementation Styles in 

Asynchronous Circuits Design 

Victor.Khomenko@ncl.ac.uk 

School of Computing Science, 

Newcastle University, UK 



2 

Speed-independence assumptions 

• Gates/latches are atomic (so no internal hazards) 

 

 

 

 

• Gate delays are positive and finite, but variable 

and unbounded 

• Wire delays are negligible (SI) 

• Alternatively, [some] wire forks are isochronic 

(QDI), i.e. wire delays can be added to gate delays 
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SI decomposition 
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Hazards can be 

introduced due to 

these delays! 



4 

Gates & latches 

• Good citizens: unate gates/latches, e.g. BUFFER, 
AND, OR, NAND, NOR, AND-OR, OR-AND, C-
element, SR-latch, RS-latch 

 Output inverters (‘bubbles’) can be used 
liberally, e.g. NAND, NOR, as the invertor’s 
delay can be added to the gate’s delay 

 Input inverters are suspect as they introduce 
delays, but in practice are ok if the wire 
between the inverter and the gate is short 

• Suspects: binate gates, e.g. XOR, NXOR, MUX, D-
latch – may have internal hazards, but may still be 
useful 
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Logic synthesis 

• Encoding (CSC) conflicts must be resolved first 

• Several kinds of implementation can then be 

derived automatically: 

 complex-gate (CG) 

 generalised C-element (gC) 

 standard-C implementation (stdC) 

• Can mix implementation styles on per-signal 

basis 

• Logic decomposition may still be required if the 

gates are too complex 
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Example: complex-gate synthesis 

Code Nxtc 

0100 
0000 
1000 
0110 
0010 
1100 
1110 
1111 
1101 
else 

1 
0 
0 
1 
0 
0 
1 
1 
1 
- 

Eqn (a+c)b+d ¯ 

b+ a+ 

b- 

d- c+ 

0100 

c+ c- b+ 

0000 

1000 

a- d+ 

0110 
0010 

1100 

1110 1111 1101 

)()()( sOutsCodesNxt zzz 
a 
b (a+c)b+d ¯ c d 

The size of this Boolean 

expression is not limited! 
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Support, triggers and context 
b+ a+ 

b- 

d- c+ 

0100 

c+ c- b+ 

0000 

1000 

a- d+ 

0110 
0010 

1100 

1110 1111 1101 

a 
b (a+c)b+d ¯ c d 

Signals that are the inputs 
of the gate producing a 
signal form its support, 
e.g. the support of c is 
{a,b,c,d}. Supports are not 
unique in general. 

Signals whose occurrence 
can immediately enable a 
signal are called its triggers, 
e.g. the triggers of c are {b,d}. 
Triggers are unique, and are 
always in the support. 

Signals in the support which 
are not triggers are called the 
context, e.g. the context of c is 
{a,c}. Context is not unique in 
general. 

support = triggers + context 
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Example: gC implementation 

Code Setc Resetc 

0100 
0000 
1000 
0110 
0010 
1100 
1110 
1111 
1101 
else 

1 
0 
0 
- 
0 
0 
- 
- 
1 
- 

0 
- 
- 
0 
1 
- 
0 
0 
0 
- 

Eqn ab+d b ¯ ¯ 

b+ a+ 

b- 

d- c+ 

0100 

c+ c- b+ 

0000 

1000 

a- d+ 

0110 
0010 

1100 

1110 1111 1101 









































otherwise

1)(if0

1)(if1

)(

otherwise

0)(if0

1)(if1

)( sNxt

sOut

sResetsNxt

sOut

sSet z

z

zz

z

z

a 
b 
d 

ab+d ¯ 

c С 

b b 

+ 

– 
Implemented as pull-up and pull-down networks of 

transistors and a ‘keeper’; assumed to be atomic 
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Example: stdC implementation 
b+ a+ 

b- 

d- c+ 

0100 

c+ c- b+ 

0000 

1000 

a- d+ 

0110 
0010 

1100 

1110 1111 1101 

Code Setc Resetc 

0100 
0000 
1000 
0110 
0010 
1100 
1110 
1111 
1101 
else 

1 
0 
0 
- 
0 
0 
- 
- 
1 
- 

0 
- 
- 
0 
1 
- 
0 
0 
0 
- 

‘Monotonic cover’ 

constraints 

Eqn abc+d b ¯ ¯ 

b b 

c С 

a 
b 
d 

ab+d ¯ 

hazard due to 

a new delay 
¯ 

b b 

c С 

a 
b 
d 

abc+d ¯ ¯ 
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Logic Decomposition 

• Often complex-gates are too complex to be mapped to 

a gate library, and so logic decomposition is required 

• Cannot naïvely break up complex-gates – this is likely 

to introduce hazards (at least, timing assumptions are 

required) 

• Decomposition is one of the most difficult tasks – no 

guarantee that automatic decomposition will succeed 

• Manual changes in the STG may be required: 

 Identify the most complex gates 

 Try some concurrency reductions 

 Try to decompose your circuit into smaller blocks 

 ‘Be creative’ 



CSC Conflict Resolution 

Victor.Khomenko@ncl.ac.uk 

 

Online tutorial available from workcraft.org 

http://workcraft.org/
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Example: VME Bus Controller 

lds- d- ldtack- ldtack+ 

dsr- dtack+ d+ 

dtack- dsr+ lds+ 
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Example: CSC conflict 

dtack- dsr+ 

dtack- dsr+ 

dtack- dsr+ 

00100 

ldtack- ldtack- ldtack- 

00000 

10000 

lds- lds- lds- 

01100 01000 11000 

lds+ 

ldtack+ 

d+ 

dtack+ dsr- 
d- 

01110 01010 11010 

01111 11111 11011 

11010 

10010 

M’’ M’ 
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Example: Resolving the conflict 

lds- 

d- 

ldtack- 

ldtack+ dsr-  dtack+ d+ 

dtack- 

dsr+ lds+  lds+ 

dsr+ 

Code(conf’)=10110 Code(conf’’)=10110 

Idea: Insert csc+ into the core and csc- outside the core to 
break the balance 

Note: Cannot delay inputs! 

Conflict core 
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Example: Resolving the conflict 

lds- d- ldtack- ldtack+ 

dsr- dtack+ d+ 

dtack- dsr+ lds+ csc+ 

csc- 
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Example: Resolving the conflict 

dtack- dsr+ 

dtack- dsr+ 

dtack- dsr+ 

001000 

ldtack- ldtack- ldtack- 

000000 100000 

lds- lds- lds- 

011000 010000 110000 

lds+ 

ldtack+ 

d+ 

dtack+ dsr- 

d- 

011100 010100 110100 

011111 111111 110111 

110101 

100101 

011110 

csc+ 

csc- 

100001 

M’’ M’ 
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Core map  

Core1 

Core2 A1 
A2 
A3 

Core3 

• Cores often overlap 

• High-density areas are good candidates for 
signal insertion 

• Analogy with topographic maps 
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csc- 

Example: core map  

csc+ 
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Concurrency reduction 

Introduces a new arc in the STG: a  b 

Note: Must not delay inputs, i.e. b cannot be an input! 

Note: Changes the behaviour, impacts the environment! 

Heuristic: Try not to introduce new triggers of b, e.g. if 
there is an arc a+  b+ then a-  b- is preferred 

Used for resolving CSC conflicts and circuit simplification 

‘Drag’ some events into the core to break the balance: 
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Example: Resolving the conflict 

lds- 

d- 

ldtack- 

ldtack+ dsr-  dtack+ d+ 

dtack- 

dsr+ lds+  lds+ 

dsr+ 

Code(conf’)=10110 Code(conf’’)=10110 

May be problematic! 
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Example: Resolving the conflict 

dtack- dsr+ 

dtack- dsr+ 

dtack- dsr+ 

00100 

ldtack- ldtack- ldtack- 

00000 

10000 

lds- lds- lds- 

01100 01000 11000 

lds+ 

ldtack+ 

d+ 

dtack+ dsr- 
d- 

01110 01010 11010 

01111 11111 11011 

11010 

10010 

M’’ M’ 
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Relative timing assumptions 

• “This event will happen faster than that one” 

• Break speed-independence, and generally problematic 

• Similar to concurrency reductions, but the introduced 
arcs are special, in particular they don’t trigger signals 

• Can “delay” inputs 

lds- 

d- 

ldtack- 

ldtack+ dsr-  dtack+ d+ 

dtack- 

dsr+ lds+  lds+ 

dsr+ 

Code(conf’)=10110 Code(conf’’)=10110 
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Example: Resolving the conflict 

dtack- dsr+ 

dtack- dsr+ 

dtack- dsr+ 

00100 

ldtack- ldtack- ldtack- 

00000 

10000 

lds- lds- lds- 

01100 01000 11000 

lds+ 

ldtack+ 

d+ 

dtack+ dsr- 
d- 

01110 01010 11010 

01111 11111 11011 

11010 

10010 

M’’ M’ 
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Comparison of the methods 
• Signal insertions – paracetamol 

  behaviour is preserved 

  inserted signals have to be implemented 

• Concurrency reductions – antibiotic 

  no new signals 

  reduced state graph and so more don’t-cares in minimisation tables 

  change the behaviour: need to be careful if input  output (even 
indirectly) – this puts a new assumption on the environment! 

  can introduce deadlocks: Circuit: a b & Environment: b  a 

• Timing assumptions – surgery 

  no new signals 

  reduced state graph and so more don’t-cares in minimisation tables 

  break speed-independence 

  require deep understanding of theory and the circuit’s behaviour 

  introduce layout constraints, and need extensive validation 

  fragile due to variability (manufacturing, temperature, voltage, etc.) 

http://workcraft.org/

