
Logic Synthesis and

Implementation Styles in

Asynchronous Circuits Design

Victor.Khomenko@ncl.ac.uk

School of Computing Science,

Newcastle University, UK

2

Speed-independence assumptions

• Gates/latches are atomic (so no internal hazards)

• Gate delays are positive and finite, but variable

and unbounded

• Wire delays are negligible (SI)

• Alternatively, [some] wire forks are isochronic

(QDI), i.e. wire delays can be added to gate delays

F

instant

evaluator

delay

…

3

SI decomposition

G

…

H1

Hk

…

…

delay

delay

delay

F

instant

evaluator

delay

…

Hazards can be

introduced due to

these delays!

4

Gates & latches

• Good citizens: unate gates/latches, e.g. BUFFER,
AND, OR, NAND, NOR, AND-OR, OR-AND, C-
element, SR-latch, RS-latch

 Output inverters (‘bubbles’) can be used
liberally, e.g. NAND, NOR, as the invertor’s
delay can be added to the gate’s delay

 Input inverters are suspect as they introduce
delays, but in practice are ok if the wire
between the inverter and the gate is short

• Suspects: binate gates, e.g. XOR, NXOR, MUX, D-
latch – may have internal hazards, but may still be
useful

5

Logic synthesis

• Encoding (CSC) conflicts must be resolved first

• Several kinds of implementation can then be

derived automatically:

 complex-gate (CG)

 generalised C-element (gC)

 standard-C implementation (stdC)

• Can mix implementation styles on per-signal

basis

• Logic decomposition may still be required if the

gates are too complex

6

Example: complex-gate synthesis

Code Nxtc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
1
0
0
1
1
1
-

Eqn (a+c)b+d ¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

)()()(sOutsCodesNxt zzz
a
b (a+c)b+d ¯ c d

The size of this Boolean

expression is not limited!

7

Support, triggers and context
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

a
b (a+c)b+d ¯ c d

Signals that are the inputs
of the gate producing a
signal form its support,
e.g. the support of c is
{a,b,c,d}. Supports are not
unique in general.

Signals whose occurrence
can immediately enable a
signal are called its triggers,
e.g. the triggers of c are {b,d}.
Triggers are unique, and are
always in the support.

Signals in the support which
are not triggers are called the
context, e.g. the context of c is
{a,c}. Context is not unique in
general.

support = triggers + context

8

Example: gC implementation

Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

Eqn ab+d b ¯ ¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

otherwise

1)(if0

1)(if1

)(

otherwise

0)(if0

1)(if1

)(sNxt

sOut

sResetsNxt

sOut

sSet z

z

zz

z

z

a
b
d

ab+d ¯

c С

b b

+

–
Implemented as pull-up and pull-down networks of

transistors and a ‘keeper’; assumed to be atomic

9

Example: stdC implementation
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

‘Monotonic cover’

constraints

Eqn abc+d b ¯ ¯

b b

c С

a
b
d

ab+d ¯

hazard due to

a new delay
¯

b b

c С

a
b
d

abc+d ¯ ¯

10

Logic Decomposition

• Often complex-gates are too complex to be mapped to

a gate library, and so logic decomposition is required

• Cannot naïvely break up complex-gates – this is likely

to introduce hazards (at least, timing assumptions are

required)

• Decomposition is one of the most difficult tasks – no

guarantee that automatic decomposition will succeed

• Manual changes in the STG may be required:

 Identify the most complex gates

 Try some concurrency reductions

 Try to decompose your circuit into smaller blocks

 ‘Be creative’

CSC Conflict Resolution

Victor.Khomenko@ncl.ac.uk

Online tutorial available from workcraft.org

http://workcraft.org/

12

Example: VME Bus Controller

lds- d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+

13

Example: CSC conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+ dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

14

Example: Resolving the conflict

lds-

d-

ldtack-

ldtack+ dsr- dtack+ d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

Idea: Insert csc+ into the core and csc- outside the core to
break the balance

Note: Cannot delay inputs!

Conflict core

15

Example: Resolving the conflict

lds- d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+ csc+

csc-

16

Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

001000

ldtack- ldtack- ldtack-

000000 100000

lds- lds- lds-

011000 010000 110000

lds+

ldtack+

d+

dtack+ dsr-

d-

011100 010100 110100

011111 111111 110111

110101

100101

011110

csc+

csc-

100001

M’’ M’

17

Core map

Core1

Core2 A1
A2
A3

Core3

• Cores often overlap

• High-density areas are good candidates for
signal insertion

• Analogy with topographic maps

18

csc-

Example: core map

csc+

19

Concurrency reduction

Introduces a new arc in the STG: a b

Note: Must not delay inputs, i.e. b cannot be an input!

Note: Changes the behaviour, impacts the environment!

Heuristic: Try not to introduce new triggers of b, e.g. if
there is an arc a+ b+ then a- b- is preferred

Used for resolving CSC conflicts and circuit simplification

‘Drag’ some events into the core to break the balance:

20

Example: Resolving the conflict

lds-

d-

ldtack-

ldtack+ dsr- dtack+ d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

May be problematic!

21

Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+ dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

22

Relative timing assumptions

• “This event will happen faster than that one”

• Break speed-independence, and generally problematic

• Similar to concurrency reductions, but the introduced
arcs are special, in particular they don’t trigger signals

• Can “delay” inputs

lds-

d-

ldtack-

ldtack+ dsr- dtack+ d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

23

Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+ dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

24

Comparison of the methods
• Signal insertions – paracetamol

 behaviour is preserved

 inserted signals have to be implemented

• Concurrency reductions – antibiotic

 no new signals

 reduced state graph and so more don’t-cares in minimisation tables

 change the behaviour: need to be careful if input output (even
indirectly) – this puts a new assumption on the environment!

 can introduce deadlocks: Circuit: a b & Environment: b a

• Timing assumptions – surgery

 no new signals

 reduced state graph and so more don’t-cares in minimisation tables

 break speed-independence

 require deep understanding of theory and the circuit’s behaviour

 introduce layout constraints, and need extensive validation

 fragile due to variability (manufacturing, temperature, voltage, etc.)

http://workcraft.org/

