
Timing diagram for the read mode Timing diagram for the write mode

Synthesis and verification of VME bus controller
A controller for VME bus [http://en.wikipedia.org/wiki/VME bus] provides an interface between a data bus
and a slave device, as shown in the following diagram.

The controller has two modes of operation: reading from the device into the bus (activated by dsr+) and
writing from the bus into the device (activated by dsw+).

In the reading mode, a request to read data form the device is made through lds+. When the device has
the data ready and this is acknowledged by ldtack+, the controller opens the transceiver by d+ and
notifies the bus that data is ready for transfer by dtack+. After the read operation is complete, all the
signals return to the initial state.

In the writing mode, once the data is stable on the bus, the transceiver is opened by d+, and the write
request is made by lds+. When the device acknowledges the receipt of data by ldtack+, the transceiver
is closed with d-, thus isolating the device from the bus, and the bus is notified that the write operation
is complete by dtack+. After that all the signals return to the initial state.

These two modes of VME control are captured by the following timing diagrams.

Modelling

Model the read mode of VME controller with an STG. Create a new STG work called stg-vme-read and
capture the sequence of events of the corresponding timing diagram.

Do the same for the write mode of VME bus control, in a separate STG work called stg-vme-write.

http://www.workcraft.org/start
http://en.wikipedia.org/wiki/VME%20bus

STG for read operation STG for write operation

The result should be similar to the following STGs.

The two STGs describe the behaviour of the same circuit and need to be combined into one
specification by merging their initial states. Create a new STG work called stg-vme-read_write and
copy-paste the STGs from stg-vme-read and stg-vme-write works into it. Create a marked place p1 that
replaces the places p1r and p1w. Similarly, substitute the places p2r and p2w with a new marked place
p2. The result should look as follows (note that the place p2 is a controlled choice whose decision is
determined by the free choice place p1).

Note the concurrency between the transitions resetting the device (lds- and ldtack-) and the new
requests from the bus (dsr+ and dsw+): A new request can arrive while the device is still resetting,
thereby allowing concurrent operation of the bus and the device. This concurrency is the
“meaning of life” of VME bus controller.

Synthesis

Resolve the encoding conflict using Petrify via
Tools→Encoding conflicts→Resolve CSC
conflicts [Petrify] menu. Petrify will insert a new
signal csc0 distinguishing between states that are
in CSC conflict. The result could look like the
following STG (note that the solution is not
unique and you may get a slightly different
STG):

The obtained STG specification has CSC and can
now be synthesised into an asynchronous circuit
implementation either with Petrify or MPSat
backend tool. A complex gate solution obtained
with Petrify is as follows (note that the solution
is not unique and you may get slightly different
equations):

[d] = dsr ldtack csc0' + dsw (csc0 + ldtack');
[dtack] = d' dsr' csc0' + d dsw';
[lds] = csc0';
[csc0] = dsr' d' (dsw' + csc0) + ldtack csc0;

Validation and verification of the STG specification

Activate the simulation tool and exercise the obtained STG model to better understand the

behaviour of VME bus controller. Click one of the enabled signal transitions (they are highlighted in
orange) to fire it. Note that the sequence of fired transitions is recorded in the simulation trace that is
somewhat similar to the original timing diagram. Check that the simulation traces correspond to the
intended behaviour of VME bus controller.

Verify the STG specification for the following properties using Tools→Verification menu:

Deadlocks

Consistency

Output persistence

Complete State Coding (CSC)

This STG does not have CSC, which means there are two reachable states that have the same value of
all signals but enable different outputs. These states are said to be in CSC conflict. Specifications with
CSC conflicts cannot be directly implemented as circuits. One way of resolving CSC conflicts is to
insert new internal signals into the STG. These internal signals add memory into the circuit helping it to
trace the current state.

Verification of the circuit implementation

Download the following complex-gate implementation of the VME bus controller circuit-vme-cg.work
(4.99 KiB) .

Assign the original STG describing the contract with the environment to the circuit model. This can be
achieved as follows:

In the circuit editor make sure that no components are selected (click on the editor canvas).

In the property editor choose the Environment URI property and select the work file with the
original STG specification.

Use the Tools→Verification menu to verify that the circuit implementation is:

deadlock-free;

hazard-free;

conforms to the original STG specification.

Solutions

Download all the Workcraft models discussed in this section here:

VME bus controller models (27.74 KiB)

http://www.workcraft.org/_media/tutorial/synthesis/vme/circuit-vme-cg.work
http://www.workcraft.org/_media/tutorial/synthesis/vme/vme.zip

