
Asynchronous Circuits:
Formal Verification and Synthesis

Victor Khomenko, Andrey Mokhov,

Danil Sokolov, Alex Yakovlev

PN/ACSD’15: Advanced Tutorial, Brussels, June 2015

Formal Verification of

Asynchronous Circuits

3

2 kinds of verification

1. Verification of the STG specification

 there is no circuit yet, just an STG
specification

 check if the STG makes sense

 check if the STG can be implemented as an
SI circuit

2. Verification of the circuit

 given a gate-level implementation of a
circuit and an STG modelling the behaviour
of the environment, check if the circuit is
correct

4

Verification of STG specification

Standard PN properties:

• boundedness / safeness – a digital circuit has

finitely many reachable states

• deadlock-freeness

• various custom reachability properties, e.g.

mutual exclusion

5

Verification of STG specification

Consistency: in each execution, the rising and

falling edges of each signal must alternate,

always starting from the same edge – reduces to

a reachability property

Intuition: at any reachable state the value of each

signal is binary

6

Verification of STG specification

Output-persistency: an enabled output must not be

disabled by another signal firing first

Intuition: disabling and enabled output can lead to a non-

digital pulse on the corresponding gate output

input / input choices: no OP violation, usually appear

due to abstraction of the environment

input / output choices: OP violation, very problematic

– usually a mistake

 output / output choices: OP

violation, usually due to

arbitration; implementable using a

mutex – can be ‘factored out’ into

the environment to ensure OP

7

Verification of STG specification

Complete State Coding (CSC): If two reachable states

have the same values of all signals then they should

enable the same outputs; two states violating this

property are said to be in CSC conflict

Intuition: the circuit can only ‘see’ the signal values (not

the tokens in the STG!), and these should be sufficient to

determine which outputs to produce

Implementability property – CSC conflicts do not indicate

that the STG is wrong; they can be resolved automatically

8

Example: CSC conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+ dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

9

Verification of the circuit
Converting a gate-level circuit to an STG:
• Represent each signal s by two places, ps=0 and ps=1;

exactly one of them is marked at any time, representing
the current value of s

• Since there is no information about the environment’s
behaviour, it is taken to be the most general (i.e., it can
always change the value of any input); this is modelled
for each input signal i by adding transitions
pi=0i+pi=1 and pi=1i−pi=0

• For each output o with the next-state function [o]=E,
compute the set and reset functions [o]=E|o=0 and
[o]=E|o=1 as minimised DNF

• For each term m of the set function, add a transition
po=0o+ po=1, and for each literal s (resp. s) in m,
connect o+ to ps=1 (resp. ps=0) by a read arc; a similar
process is used to define the transitions o− using the
reset function

10

Example: modelling a C-element

• This PN has more behaviour than the
specification of C-element

• Not output-persistent: after in1+ in2+
the output out+ can be disabled by
in1- or in2-, i.e. there is a hazard

• This is because the circuit (and thus
this STG) lacks information about the
environment’s behaviour!

• The circuit works correctly in an
environment that fulfils the original
contract

[out] = out·(in1 + in2) + in1·in2

[out] = 0·(in1 + in2) + in1·in2 = in1·in2

[out] = (1·(in1 + in2) + in1·in2) =

(in1 + in2 + in1·in2) = (in1 + in2) =

in1·in2

11

Gate-level modelling: Verification
Gate-level circuit has no information about its
environment, so naïve verification will always
reveal hazards in any non-trivial circuit with inputs.
Hence need to supply the environment’s behaviour
during verification: Assuming the environment
fulfils the contract, the circuit must:

• be free from hazards: no output can be disabled by
another signal (except in mutex)

• conform to its environment, i.e. never produce an
unexpected output – the circuit must fulfil its contract too

• be deadlock-free

• etc.

12

Gate-level modelling: Verification
Problem: how to restrict the behaviour of the circuit by the
behaviour of the environment to verify the properties?

Idea: use parallel composition! First, convert the circuit into
an STG and then compose the latter with the mirror (i.e.
inputs and outputs are swapped) of the original STG spec:

|

mirror

13

Parallel composition
• Idea: Fuse transitions from different STGs that have

the same label (if STGs have several transitions with
the same label, fuse each such transition in STG1 with
each such transition in STG2)

• Example:

| =

14

Example: C-element
Can a C-element be implemented by the following circuits?

long wire

isochronic fork

fork

Under the Bonnet of Workcraft

16

PUNF – parallel unfolder

• Tool for building Petri net unfoldings

• Utilises multiple processor cores

• Unfoldings alleviate the state space
explosion problem – the number of
reachable states is generally exponential
in the size of the specification

• Works very well for asynchronous circuits
due to high concurrency and small number
of choices – an ideal case for unfoldings

17

MPSAT – verification and synthesis

• Uses PUNF-generated prefixes as an input
– completely avoids state graph

• Employs a SAT solver for efficiency

• Verifies many relevant properties, like
deadlocks, CSC, etc.

• Supports REACH – a language to specify
custom properties

• Synthesis: CSC resolution, deriving
complex-gate, gC, stdC implementations,
logic decomposition

18

PCOMP – parallel composition

• Composes several STGs, optionally hiding
the internal communication, e.g.:

 to compose several modules into one

 to compose a circuit with its
environment for verification

CSC Conflict Resolution

20

Example: VME Bus Controller

lds- d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+

21

Example: CSC conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+ dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

22

Example: Resolving the conflict

lds-

d-

ldtack-

ldtack+ dsr- dtack+ d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

Idea: Insert csc+ into the core and csc- outside the core to
break the balance

Note: Cannot delay inputs!

Conflict core

23

Example: Resolving the conflict

lds- d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+ csc+

csc-

24

Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

001000

ldtack- ldtack- ldtack-

000000 100000

lds- lds- lds-

011000 010000 110000

lds+

ldtack+

d+

dtack+ dsr-

d-

011100 010100 110100

011111 111111 110111

110101

100101

011110

csc+

csc-

100001

M’’ M’

25

Core map

Core1

Core2 A1
A2
A3

Core3

• Cores often overlap

• High-density areas are good candidates for
signal insertion

• Analogy with topographic maps

26

csc-

Example: core map

csc+

27

Concurrency reduction

Introduces a new arc in the STG: a  b

Note: Must not delay inputs, i.e. b cannot be an input!

Note: Changes the behaviour, impacts the environment!

Heuristic: Try not to introduce new triggers of b, e.g. if
there is an arc a+  b+ then a-  b- is preferred

Used for resolving CSC conflicts and circuit simplification

‘Drag’ some events into the core to break the balance:

28

Example: Resolving the conflict

lds-

d-

ldtack-

ldtack+ dsr- dtack+ d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

May be problematic!

29

Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+ dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

30

Relative timing assumptions

• “This event will happen faster than that one”

• Break speed-independence, and generally problematic

• Similar to concurrency reductions, but the introduced
arcs are special, in particular they don’t trigger signals

• Can “delay” inputs

lds-

d-

ldtack-

ldtack+ dsr- dtack+ d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

31

Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+ dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

32

Comparison of the methods
• Signal insertions – paracetamol

  behaviour is preserved

  inserted signals have to be implemented

• Concurrency reductions – antibiotic

  no new signals

  reduced state graph and so more don’t-cares in minimisation tables

  change the behaviour: need to be careful if input  output (even
indirectly) – this puts a new assumption on the environment!

  can introduce deadlocks: Circuit: a b & Environment: b  a

• Timing assumptions – surgery

  no new signals

  reduced state graph and so more don’t-cares in minimisation tables

  break speed-independence

  require deep understanding of theory and the circuit’s behaviour

  introduce layout constraints, and need extensive validation

  fragile due to variability (manufacturing, temperature, voltage, etc.)

Logic Synthesis and

Implementation Styles in

Asynchronous Circuits Design

34

Speed-independence assumptions

• Gates/latches are atomic (so no internal hazards)

• Gate delays are positive and finite, but variable

and unbounded

• Wire delays are negligible (SI)

• Alternatively, [some] wire forks are isochronic

(QDI), i.e. wire delays can be added to gate delays

F

instant

evaluator

delay

…

35

SI decomposition

G

…

H1

Hk

…

…

delay

delay

delay

F

instant

evaluator

delay

…

Hazards can be

introduced due to

these delays!

36

Gates & latches

• Good citizens: unate gates/latches, e.g. BUFFER,
AND, OR, NAND, NOR, AND-OR, OR-AND, C-
element, SR-latch, RS-latch

 Output inverters (‘bubbles’) can be used
liberally, e.g. NAND, NOR, as the invertor’s
delay can be added to the gate’s delay

 Input inverters are suspect as they introduce
delays, but in practice are ok if the wire
between the inverter and the gate is short

• Suspects: binate gates, e.g. XOR, NXOR, MUX, D-
latch – may have internal hazards, but may still be
useful

37

Logic synthesis

• Encoding (CSC) conflicts must be resolved first

• Several kinds of implementation can then be

derived automatically:

 complex-gate (CG)

 generalised C-element (gC)

 standard-C implementation (stdC)

• Can mix implementation styles on per-signal

basis

• Logic decomposition may still be required if the

gates are too complex

38

Example: complex-gate synthesis

Code Nxtc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
1
0
0
1
1
1
-

Eqn (a+c)b+d ¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

)()()(sOutsCodesNxt zzz 
a
b (a+c)b+d ¯ c d

The size of this Boolean

expression is not limited!

39

Support, triggers and context
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

a
b (a+c)b+d ¯ c d

Signals that are the inputs
of the gate producing a
signal form its support,
e.g. the support of c is
{a,b,c,d}. Supports are not
unique in general.

Signals whose occurrence
can immediately enable a
signal are called its triggers,
e.g. the triggers of c are {b,d}.
Triggers are unique, and are
always in the support.

Signals in the support which
are not triggers are called the
context, e.g. the context of c is
{a,c}. Context is not unique in
general.

support = triggers + context

40

Example: gC implementation

Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

Eqn ab+d b ¯ ¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101









































otherwise

1)(if0

1)(if1

)(

otherwise

0)(if0

1)(if1

)(sNxt

sOut

sResetsNxt

sOut

sSet z

z

zz

z

z

a
b
d

ab+d ¯

c С

b b

+

–
Implemented as pull-up and pull-down networks of

transistors and a ‘keeper’; assumed to be atomic

41

Example: stdC implementation
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

‘Monotonic cover’

constraints

Eqn abc+d b ¯ ¯

b b

c С

a
b
d

ab+d ¯

hazard due to

a new delay
¯

b b

c С

a
b
d

abc+d ¯ ¯

42

Logic Decomposition

• Often complex-gates are too complex to be mapped to

a gate library, and so logic decomposition is required

• Cannot naïvely break up complex-gates – this is likely

to introduce hazards (at least, timing assumptions are

required)

• Decomposition is one of the most difficult tasks – no

guarantee that automatic decomposition will succeed

• Manual changes in the STG may be required:

 identify the most complex gates

 try some concurrency reductions

 try to decompose your circuit into smaller blocks

 ‘be creative’

