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Formal Verification of 

Asynchronous Circuits 
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2 kinds of verification 

1. Verification of the STG specification 

 there is no circuit yet, just an STG 
specification 

 check if the STG makes sense 

 check if the STG can be implemented as an 
SI circuit 

2. Verification of the circuit 

 given a gate-level implementation of a 
circuit and an STG modelling the behaviour 
of the environment, check if the circuit is 
correct 
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Verification of STG specification 

Standard PN properties: 

• boundedness / safeness – a digital circuit has 

finitely many reachable states 

• deadlock-freeness 

• various custom reachability properties, e.g. 

mutual exclusion 
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Verification of STG specification 

Consistency: in each execution, the rising and 

falling edges of each signal must alternate, 

always starting from the same edge – reduces to 

a reachability property 

Intuition: at any reachable state the value of each 

signal is binary 
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Verification of STG specification 

Output-persistency: an enabled output must not be 

disabled by another signal firing first 

Intuition: disabling and enabled output can lead to a non-

digital pulse on the corresponding gate output 

input / input choices: no OP violation, usually appear 

due to abstraction of the environment 

input / output choices: OP violation, very problematic 

– usually a mistake 

 output / output choices: OP 

violation, usually due to 

arbitration; implementable using a 

mutex – can be ‘factored out’ into 

the environment to ensure OP 
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Verification of STG specification 

Complete State Coding (CSC): If two reachable states 

have the same values of all signals then they should 

enable the same outputs; two states violating this 

property are said to be in CSC conflict 

Intuition: the circuit can only ‘see’ the signal values (not 

the tokens in the STG!), and these should be sufficient to 

determine which outputs to produce 

Implementability property – CSC conflicts do not indicate 

that the STG is wrong; they can be resolved automatically 
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Example: CSC conflict 

dtack- dsr+ 

dtack- dsr+ 

dtack- dsr+ 

00100 

ldtack- ldtack- ldtack- 

00000 

10000 

lds- lds- lds- 

01100 01000 11000 

lds+ 

ldtack+ 

d+ 

dtack+ dsr- 
d- 

01110 01010 11010 

01111 11111 11011 

11010 

10010 

M’’ M’ 
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Verification of the circuit 
Converting a gate-level circuit to an STG: 
• Represent each signal s by two places, ps=0 and ps=1; 

exactly one of them is marked at any time, representing 
the current value of s 

• Since there is no information about the environment’s 
behaviour, it is taken to be the most general (i.e., it can 
always change the value of any input); this is modelled 
for each input signal i by adding transitions 
pi=0i+pi=1 and pi=1i−pi=0 

• For each output o with the next-state function [o]=E, 
compute the set and reset functions [o]=E|o=0 and 
[o]=E|o=1 as minimised DNF  

• For each term m of the set function, add a transition 
po=0o+ po=1, and for each literal s (resp. s) in m, 
connect o+ to ps=1 (resp. ps=0) by a read arc; a similar 
process is used to define the transitions o− using the 
reset function 
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Example: modelling a C-element 

• This PN has more behaviour than the 
specification of C-element 

• Not output-persistent: after in1+ in2+ 
the output out+ can be disabled by 
in1- or in2-, i.e. there is a hazard 

• This is because the circuit (and thus 
this STG) lacks information about the 
environment’s behaviour! 

• The circuit works correctly in an 
environment that fulfils the original 
contract 

[out] = out·(in1 + in2) + in1·in2 

[out] = 0·(in1 + in2) + in1·in2 = in1·in2 

[out] = (1·(in1 + in2) + in1·in2) = 

(in1 + in2 + in1·in2) = (in1 + in2) = 

in1·in2 



11 

Gate-level modelling: Verification 
Gate-level circuit has no information about its 
environment, so naïve verification will always 
reveal hazards in any non-trivial circuit with inputs. 
Hence need to supply the environment’s behaviour 
during verification: Assuming the environment 
fulfils the contract, the circuit must: 

• be free from hazards: no output can be disabled by 
another signal (except in mutex) 

• conform to its environment, i.e. never produce an 
unexpected output – the circuit must fulfil its contract too 

• be deadlock-free 

• etc. 
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Gate-level modelling: Verification 
Problem: how to restrict the behaviour of the circuit by the 
behaviour of the environment to verify the properties? 

Idea: use parallel composition! First, convert the circuit into 
an STG and then compose the latter with the mirror (i.e. 
inputs and outputs are swapped) of the original STG spec: 

 

| 

mirror 
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Parallel composition 
• Idea: Fuse transitions from different STGs that have 

the same label (if STGs have several transitions with 
the same label, fuse each such transition in STG1 with 
each such transition in STG2) 

• Example: 

| = 
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Example: C-element 
Can a C-element be implemented by the following circuits? 

long wire 

isochronic fork 

fork 



Under the Bonnet of Workcraft 
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PUNF – parallel unfolder 

• Tool for building Petri net unfoldings 

• Utilises multiple processor cores 

• Unfoldings alleviate the state space 
explosion problem – the number of 
reachable states is generally exponential 
in the size of the specification 

• Works very well for asynchronous circuits 
due to high concurrency and small number 
of choices – an ideal case for unfoldings 
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MPSAT – verification and synthesis 

• Uses PUNF-generated prefixes as an input 
– completely avoids state graph 

• Employs a SAT solver for efficiency 

• Verifies many relevant properties, like 
deadlocks, CSC, etc. 

• Supports REACH – a language to specify 
custom properties 

• Synthesis: CSC resolution, deriving 
complex-gate, gC, stdC implementations, 
logic decomposition 
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PCOMP – parallel composition 

• Composes several STGs, optionally hiding 
the internal communication, e.g.: 

 to compose several modules into one 

 to compose a circuit with its 
environment for verification 



CSC Conflict Resolution 
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Example: VME Bus Controller 

lds- d- ldtack- ldtack+ 

dsr- dtack+ d+ 

dtack- dsr+ lds+ 
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Example: CSC conflict 

dtack- dsr+ 

dtack- dsr+ 

dtack- dsr+ 

00100 

ldtack- ldtack- ldtack- 

00000 

10000 

lds- lds- lds- 

01100 01000 11000 

lds+ 

ldtack+ 

d+ 

dtack+ dsr- 
d- 

01110 01010 11010 

01111 11111 11011 

11010 

10010 

M’’ M’ 
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Example: Resolving the conflict 

lds- 

d- 

ldtack- 

ldtack+ dsr-  dtack+ d+ 

dtack- 

dsr+ lds+  lds+ 

dsr+ 

Code(conf’)=10110 Code(conf’’)=10110 

Idea: Insert csc+ into the core and csc- outside the core to 
break the balance 

Note: Cannot delay inputs! 

Conflict core 
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Example: Resolving the conflict 

lds- d- ldtack- ldtack+ 

dsr- dtack+ d+ 

dtack- dsr+ lds+ csc+ 

csc- 
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Example: Resolving the conflict 

dtack- dsr+ 

dtack- dsr+ 

dtack- dsr+ 

001000 

ldtack- ldtack- ldtack- 

000000 100000 

lds- lds- lds- 

011000 010000 110000 

lds+ 

ldtack+ 

d+ 

dtack+ dsr- 

d- 

011100 010100 110100 

011111 111111 110111 

110101 

100101 

011110 

csc+ 

csc- 

100001 

M’’ M’ 
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Core map  

Core1 

Core2 A1 
A2 
A3 

Core3 

• Cores often overlap 

• High-density areas are good candidates for 
signal insertion 

• Analogy with topographic maps 
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csc- 

Example: core map  

csc+ 
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Concurrency reduction 

Introduces a new arc in the STG: a  b 

Note: Must not delay inputs, i.e. b cannot be an input! 

Note: Changes the behaviour, impacts the environment! 

Heuristic: Try not to introduce new triggers of b, e.g. if 
there is an arc a+  b+ then a-  b- is preferred 

Used for resolving CSC conflicts and circuit simplification 

‘Drag’ some events into the core to break the balance: 
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Example: Resolving the conflict 

lds- 

d- 

ldtack- 

ldtack+ dsr-  dtack+ d+ 

dtack- 

dsr+ lds+  lds+ 

dsr+ 

Code(conf’)=10110 Code(conf’’)=10110 

May be problematic! 
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Example: Resolving the conflict 

dtack- dsr+ 

dtack- dsr+ 

dtack- dsr+ 

00100 

ldtack- ldtack- ldtack- 

00000 

10000 

lds- lds- lds- 

01100 01000 11000 

lds+ 

ldtack+ 

d+ 

dtack+ dsr- 
d- 

01110 01010 11010 

01111 11111 11011 

11010 

10010 

M’’ M’ 
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Relative timing assumptions 

• “This event will happen faster than that one” 

• Break speed-independence, and generally problematic 

• Similar to concurrency reductions, but the introduced 
arcs are special, in particular they don’t trigger signals 

• Can “delay” inputs 

lds- 

d- 

ldtack- 

ldtack+ dsr-  dtack+ d+ 

dtack- 

dsr+ lds+  lds+ 

dsr+ 

Code(conf’)=10110 Code(conf’’)=10110 
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Example: Resolving the conflict 

dtack- dsr+ 

dtack- dsr+ 

dtack- dsr+ 

00100 

ldtack- ldtack- ldtack- 

00000 

10000 

lds- lds- lds- 

01100 01000 11000 

lds+ 

ldtack+ 

d+ 

dtack+ dsr- 
d- 

01110 01010 11010 

01111 11111 11011 

11010 

10010 

M’’ M’ 
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Comparison of the methods 
• Signal insertions – paracetamol 

  behaviour is preserved 

  inserted signals have to be implemented 

• Concurrency reductions – antibiotic 

  no new signals 

  reduced state graph and so more don’t-cares in minimisation tables 

  change the behaviour: need to be careful if input  output (even 
indirectly) – this puts a new assumption on the environment! 

  can introduce deadlocks: Circuit: a b & Environment: b  a 

• Timing assumptions – surgery 

  no new signals 

  reduced state graph and so more don’t-cares in minimisation tables 

  break speed-independence 

  require deep understanding of theory and the circuit’s behaviour 

  introduce layout constraints, and need extensive validation 

  fragile due to variability (manufacturing, temperature, voltage, etc.) 



Logic Synthesis and 

Implementation Styles in 

Asynchronous Circuits Design 
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Speed-independence assumptions 

• Gates/latches are atomic (so no internal hazards) 

 

 

 

 

• Gate delays are positive and finite, but variable 

and unbounded 

• Wire delays are negligible (SI) 

• Alternatively, [some] wire forks are isochronic 

(QDI), i.e. wire delays can be added to gate delays 

F 

instant 

evaluator 

delay 

…
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SI decomposition 

G 

…
 

H1 

Hk 

…
 

…
 

delay 

delay 

delay 

F 

instant 

evaluator 

delay 

…
 

Hazards can be 

introduced due to 

these delays! 
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Gates & latches 

• Good citizens: unate gates/latches, e.g. BUFFER, 
AND, OR, NAND, NOR, AND-OR, OR-AND, C-
element, SR-latch, RS-latch 

 Output inverters (‘bubbles’) can be used 
liberally, e.g. NAND, NOR, as the invertor’s 
delay can be added to the gate’s delay 

 Input inverters are suspect as they introduce 
delays, but in practice are ok if the wire 
between the inverter and the gate is short 

• Suspects: binate gates, e.g. XOR, NXOR, MUX, D-
latch – may have internal hazards, but may still be 
useful 
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Logic synthesis 

• Encoding (CSC) conflicts must be resolved first 

• Several kinds of implementation can then be 

derived automatically: 

 complex-gate (CG) 

 generalised C-element (gC) 

 standard-C implementation (stdC) 

• Can mix implementation styles on per-signal 

basis 

• Logic decomposition may still be required if the 

gates are too complex 
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Example: complex-gate synthesis 

Code Nxtc 

0100 
0000 
1000 
0110 
0010 
1100 
1110 
1111 
1101 
else 

1 
0 
0 
1 
0 
0 
1 
1 
1 
- 

Eqn (a+c)b+d ¯ 

b+ a+ 

b- 

d- c+ 

0100 

c+ c- b+ 

0000 

1000 

a- d+ 

0110 
0010 

1100 

1110 1111 1101 

)()()( sOutsCodesNxt zzz 
a 
b (a+c)b+d ¯ c d 

The size of this Boolean 

expression is not limited! 
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Support, triggers and context 
b+ a+ 

b- 

d- c+ 

0100 

c+ c- b+ 

0000 

1000 

a- d+ 

0110 
0010 

1100 

1110 1111 1101 

a 
b (a+c)b+d ¯ c d 

Signals that are the inputs 
of the gate producing a 
signal form its support, 
e.g. the support of c is 
{a,b,c,d}. Supports are not 
unique in general. 

Signals whose occurrence 
can immediately enable a 
signal are called its triggers, 
e.g. the triggers of c are {b,d}. 
Triggers are unique, and are 
always in the support. 

Signals in the support which 
are not triggers are called the 
context, e.g. the context of c is 
{a,c}. Context is not unique in 
general. 

support = triggers + context 
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Example: gC implementation 

Code Setc Resetc 

0100 
0000 
1000 
0110 
0010 
1100 
1110 
1111 
1101 
else 

1 
0 
0 
- 
0 
0 
- 
- 
1 
- 

0 
- 
- 
0 
1 
- 
0 
0 
0 
- 

Eqn ab+d b ¯ ¯ 

b+ a+ 

b- 

d- c+ 

0100 

c+ c- b+ 

0000 

1000 

a- d+ 

0110 
0010 

1100 

1110 1111 1101 









































otherwise

1)(if0

1)(if1

)(

otherwise

0)(if0

1)(if1

)( sNxt

sOut

sResetsNxt

sOut

sSet z

z

zz

z

z

a 
b 
d 

ab+d ¯ 

c С 

b b 

+ 

– 
Implemented as pull-up and pull-down networks of 

transistors and a ‘keeper’; assumed to be atomic 
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Example: stdC implementation 
b+ a+ 

b- 

d- c+ 

0100 

c+ c- b+ 

0000 

1000 

a- d+ 

0110 
0010 

1100 

1110 1111 1101 

Code Setc Resetc 

0100 
0000 
1000 
0110 
0010 
1100 
1110 
1111 
1101 
else 

1 
0 
0 
- 
0 
0 
- 
- 
1 
- 

0 
- 
- 
0 
1 
- 
0 
0 
0 
- 

‘Monotonic cover’ 

constraints 

Eqn abc+d b ¯ ¯ 

b b 

c С 

a 
b 
d 

ab+d ¯ 

hazard due to 

a new delay 
¯ 

b b 

c С 

a 
b 
d 

abc+d ¯ ¯ 
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Logic Decomposition 

• Often complex-gates are too complex to be mapped to 

a gate library, and so logic decomposition is required 

• Cannot naïvely break up complex-gates – this is likely 

to introduce hazards (at least, timing assumptions are 

required) 

• Decomposition is one of the most difficult tasks – no 

guarantee that automatic decomposition will succeed 

• Manual changes in the STG may be required: 

 identify the most complex gates 

 try some concurrency reductions 

 try to decompose your circuit into smaller blocks 

 ‘be creative’ 


