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Contents of lectures 

Before lunch: 

• Introduction: Petri nets and Hardware Design 

• Hardware modelling with Petri nets 

• Petri nets and Circuit Synthesis: Basics 

 

• Asynchronous Circuit Verification 

• Asynchronous Circuit Synthesis 

• Design examples 

 

After lunch: 

• Practical exercises with tools Petrify and Workcraft 
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Introduction. Outline 

• Role of Hardware in modern systems 

• Role of Hardware design tools 

• Role of a modeling language 

• Why Petri nets are good for Hardware 

Design 

• History of relationship between 

Hardware Design and Petri nets 

• Asynchronous Circuit Design 



Role of Hardware in modern systems  
• Technology allows putting up to several billion transistors on 

a chip; Multi-core Systems on Chip are now a reality – 

reaching up to 100 CPU cores 

• E.g.  IBM’s z13 CPU chip (2015) – 22nm CMOS SOI, 4B transistors, 678 

mm2, 5GHz, 17 metal layers; IBM’s storage controller up to 7B  

• E.g. Intel’s Xeon Phi (2012) – 22nm, 5B transistors, 60 cores 

• Hardware and software designs are no longer separate 

• Hardware becomes distributed, asynchronous and 

concurrent 

• Hardware requires power, consumes energy, radiates heat, 

electro-magnetic emission 

• Hardware causes, and partly recovers from, faults and 

failures 



 

Area = 1 

Area = 0.5 

Dr. Gordon E. Moore’s Law 
Integration’s Capacity Doubles Every Two 

Years 

“The complexity for minimum component costs has 

increased at a rate of roughly a factor of two per 

year ... Certainly over the short term this rate can be 

expected to continue, if not to increase. Over the 

longer term, the rate of increase is a bit more 

uncertain, although there is no reason to believe it 

will not remain nearly constant for at least 10 

years.” Gordon E. Moore, Electronic Magazine, 

April 19th, 1965 

The Scaling Factor 

 0.5 = ~0.7 

Source:  

Tom Williams,  

Synopsys 



Cost of Scaling 

Source: ITRS 2005/2006 90nm 65nm 45nm 

Device Length (nm)  1X 0.7X 0.5X 

Delay (ps)  1X 0.7X 0.5X 

Frequency (GHz)  1X 1.2X 1.45X 

Integration Capacity (BTx)  1X 2X 4X 

Capacitance (fF)  1X 0.7X 0.5X 

Die Size (mm2)  1X 1X 1X 

Voltage (V)  1X 0.85X 0.75X 

Dynamic Power (W)  1X > 0.7X > 0.5X 

Manufacturing (microcents/Tx)  1X 0.35X 0.12X 

Source:  Tom 

Williams, Synopsys 



Costs of Scaling 

Source: ITRS 2005 90nm 65nm 45nm 

VTH (V)  1X 0.85X 0.75X 

IOFF (nA/um)  1X ~3X ~9X 

Dynamic Power Density (W/cm2)  1X 1.43X 2X 

Leakage Power Density (W/cm2)  1X ~2.5X ~6.5X 

Power Density (W/cm2)  1X ~2X ~4X 

Cu Resistance (Ω)  1X 2X 4X 

Interconnect RC Delay (ps)  1X ~2X ~5X 

Packaging (cents/pin)  1X 0.86X 0.73X 

Test (nanocents/Tx)  1X 1X 1X 

Source:  Tom Williams,  

Synopsys 

To lower leakage by process one needs  

to give up on performance 



Growing Silicon Complexities 

• Non-ideal device and 
supply/threshold voltage 
scaling:  

– Leakage,  

– Power management and 
delivery 

• Non-ideal wire scaling:  

– Communication,  

– Synchronization 

•  High frequency coupling:  

– Noise,  

– Signal integrity,  

– Delay variation 

 

• Process variation:  

– Characterization,  

– Error tolerance 

• Lower reliability:  

– Insulator breakdown,  

– Electro-migration,  

– Single event upsets 

• Manufacture handoff:  

– Time and money 

 



Implications of Complexities 

• Super-exponential increase in the complexity of the 

design process 

• No chip-wide synchronization 

– Asynchronous design suggested as “challenge” 

– Using Globally Async and Locally Sync (GALS) is a 

way 

• Statistical behavior of transistor / gate / cell (due to 

process variability) 

• Some signals lost sometimes  

– Error-tolerant design  

 

 



Relationship with uncertainty  

(e.g. timing variability) 

Timing robustness 

Source of variability  

analysis: 

Yu Cao,  Clark, L.T., 

2007 

Technology node: 

 90nm 

12 



Role of Hardware design tools 

• Design productivity is a problem due to chip 

complexity and time to market demands 

• Need for well-integrated CAD with simulation, 

synthesis, verification and testing tools 

• Modelling of system behaviour at all levels of 

abstraction with feedback to the designer 

• Design re-use is a must but with max technology 

independence 



Role of Modelling Language 

• Design methods and tools require good modelling and 
specification techniques 

• Those must be formal and rigorous and easy to 
comprehend (cf. timing diagrams, waveforms, 
traditionally used by logic designers) 

• Today’s hardware description languages allow high level 
of abstraction, but they are often not capable to expose 
the low level (behavioural) details in an adequate form 

• Models must allow for equivalence-preserving 
refinements, decomposition, analysis and synthesis 

• They must allow for non-functional qualities such as 
speed, size and power 



Why Petri nets are good for 

hardware design 
• simple and easy to understand graphical capture 

• modelling power adjustable to various types of behaviour at different 

abstraction levels 

• formal operational semantics and verification of correctness (safety and 

liveness) properties 

• possibility of mechanical synthesis of circuits from various behavioural 

models, such as nets, transition systems, trace characterisations 

• possibility of synthesis of specifications and visualisation of circuit behaviour 

using THEORY OF REGIONS 

• Introducing extra aspects such as step semantics and policies into 

synthesis helps to address aspects of Globally Asynchronous Locally 

Synchronous (GALS) and power management 

We see Petri nets more and more as a unifying modelling language for 

reasoning about the behaviour of digital circuits and systems, where 

various application-specific and engineering-specific modelling notations 

can be used as front-end notations. 



A bit of history of their relationship 

• 1950’s and 60’s: Foundations (Muller & Bartky, Petri, 
Karp & Miller, …) 

• 1970’s: Toward Parellel Computations (MIT, Toulouse, 
St. Petersburg, Manchester …) 

• 1980’s: First progress in VLSI and  CAD, Concurrency 
theory, Signal Transition Graphs (STGs) 

• 1990’s: First asynchronous design (verification and 
synthesis) tools: SIS, Forcage, Petrify 

• 2000’s: Powerful asynchronous design flow (incl. 
hardware-software co-design and system-on-chip 
design): Balsa, Haste, Elastic Clocks 

• 2010’s: Design flows for hybrid sync-async systems with 
Petri nets as internal representation: Workcraft, Tools for 
GALS … 



Introduction to Asynchronous 

Circuits 

• What is an asynchronous circuit? 
– Physical (analogue) level 

– Logical level 

– Speed-independent and delay-insensitive circuits 

• Why go asynchronous? 

• Why control logic? 

• Role of Petri nets 

• Asynchronous circuit design based on Petri nets 



What is an asynchronous circuit 

• No global clock; circuits are self-timed or self-clocked 

• Can be viewed as hardwired versions of parallel and 

distributed programs – statements are activated when 

their guards are true 

• No special run-time mechanism – the “program 

statements” are physical components: logic gates, 

memory latches, or hierarchical modules 

• Interconnections are also physical components: wires, 

busses 



Synchronous Design 

Register 

Sender Logic 
Register 

Receiver 

Clock 

Data 

Data input 

Clock 

 Tsetup  Thold 

Timing constraint: input data must stay unchanged within a 

setup/hold window around clock event. Otherwise, the latch may fail 

(e.g. metastability) 

Power must be stable, say at 1Volt to avoid variation of delays 

Power 



Asynchronous Design 

Register 

Sender Logic 
Register 

Receiver 

Data 

Data input 

Req 

Req/Ack (local) signal handshake protocol instead of global clock 

Causal relationship 

Handshake signals implemented with completion detection in data path 

Power may fluctuate, e.g. between 0.5V and 1.5V 

Ack(nowledge) 

Req(est) 

Ack 

Power 



Physical (Analogue) level 

• Strict view: an asynchronous circuit is a (analogue) 

dynamical system – e.g. to be described by differential 

equations 

• In most cases can be safely approximated by logic level 

(0-to-1 and 1-to-0 transitions) abstraction; even hazards 

can be captured 

• For some anomalous effects, such as metastability and 

oscillations, absolute need for analogue models 

• Analogue aspects are not considered in this tutorial 



Logical Level 

• Circuit behaviour is described by sequences of up (0-to-
1) and down (1-to-0) transitions on inputs and outputs 

• The order of transitions is defined by causal relationship, 
not by clock (a causes b, directly or transitively) 

• The order is partial if concurrency is present 

• Two prominent classes of async circuits: speed-
independent (work for any gate delay variations) and 
delay-insensitive (for both gate and wire delays) 

• A class of async timed (not clocked!) circuits allows 
special timing order relations (a occurs before b, due to 
delay assumptions) 



Relationship with uncertainty  

(e.g. timing variability) 

Timing robustness 

Source of variability  

analysis: 

Yu Cao,  Clark, L.T., 

2007 

Technology node: 

 90nm 

23 



Simple circuit example 

req1 
x 

y 
+ 

req2 
a 

b 
+ 

req3 

* 

C 

ack1 

ack2 ack3 

out 

out=(x+y)*(a+b) 

+ 

+ 

* 

x 

y 

a 

b 

out 

Data flow graph Control flow graph – 

Petri net 

req1 

req2 

ack1 

ack2 

req3 ack3 



Muller C-element 

Key component in asynchronous circuit design – like 

a Petri net transition 

C 

x1 

y 
x2 

y=x1*x2+(x1+x2)y 

Set-part Reset-part 

It acts symmetrically for pairs of 0-1 and 1-0 

transitions – waits for both input events to occur 



Muller C-element (in CMOS) 
Vdd 

Gnd 

x1 

x1 

x1 

x1 x2 

x2 

x2 

x2 

y 

y 

y 

C 

x1 

y 
x2 

y=x1*x2+(x1+x2)y 

Set-part Reset-part 



Why asynchronous is good 

• Performance (work on actual, not max delays) 

• Robustness (operationally scalable; no clock distribution; 
important when gate-to-wire delay ratio changes) 

• Low Power (‘change-based’ computing – fewer signal 
transitions) and Power-Proportional (activity level is as 
much/little as power invested), opportunities for energy-
harvesting systems such as wireless sensor nodes 

• Low Electromagnetic Emission (more even 
power/frequency spectrum) 

• Modularity and re-use (parts designed independently; 
well-defined interfaces) 

• Testability (inherent self-checking via ack signals) 



Async logic can work from AC supply! 

2-bit Sequential Dual-rail 

Asynchronous Counter 

Supply: AC 

200mV±100mV 

Frequency: 1Mhz 
A1.f 

A1.t 

A0.f 

A0.t 

Self-timed logic with 

completion detection is 

robust to power supply 

variations 



Source: Akgun et al, ASYNC’10 

Asynchronous (self-

timed) logic can 

provide completion 

detection and thus 

reduce the interval of 

leakage to minimum, 

thereby doing 

nothing well! 

Sync vs Async Design (in terms of 

energy efficiency) 



Role of Petri Nets 

• We concentrate here on control logic 

• Control logic is behaviourally more diverse than data 
path 

• Petri nets capture causality and concurrency between 
signalling events, deterministic and non-deterministic 
choice in the circuit and its environment 

• They allow:  
– composition of labelled PNs (transition or place sync/tion) 

– refinement of event annotation (from abstract operations down to 
signal transitions) 

– use of observational equivalence (lambda-events) 

– clear link with state-transition models in both directions 
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Modelling.Outline 

• High level modelling and abstract 

refinement; processor example 

• Low level modelling and logic synthesis; 

interface controller example 

• Modelling of logic circuits: event-driven and 

level-driven parts 

• Properties analysed  



High-level modelling:Processor 

Example 
Instruction 

Fetch 

Instruction 

Execution 

Program 

Counter 

Update 

Memory 

Address 

Register Load 

Memory 

Read 

 Instruction 

Register Load 

Two-word 

Instruction 

Decode  

Two-word 

Instruction 

Execute  

One-word 

Instruction 

Decode  

One-word 

Instruction 

Execute  



High-level modelling:Processor 

Example 
• Details of further refinement, circuit implementation (by 

direct translation) and performance estimation (using 
UltraSan) are in: 

 A. Semenov, A.M. Koelmans, L.Lloyd and A. Yakovlev. Designing 
an asynchronous processor using Petri Nets, IEEE Micro, 17(2):54-
64, March 1997 

• For use of Coloured Petri net models and use of 
Design/CPN in processor modelling: 

 F.Burns, A.M. Koelmans and A. Yakovlev. Analysing superscalar 
processor architectures with coloured Petri nets, Int. Journal on 
Software Tools for Technology Transfer, vol.2, no.2, Dec. 1998, pp. 
182-191. 

 

 

   



Using Coloured Petri nets 

i n

I R

P C

V a l u e

V a l u e

1 ' f e t c h

[ # n o  f e t c h  =  p c ]

1 ' f e t c h 1 ' f e t c h

Count

1'(no=1,instr=INT,d=0,d'=0,t=0)+

1'pc

1'(pc+1)

FETCH
@+1

1'1

Color Set:

color Instr = with INT | FPADD | MUL | DIV | BRA | NULL;
color Line = int; color Dep = int;color Target = int; color Count = int timed;
colour Value = record no:Line*instr:Instr*d:Dep*d':Dep*t:Target timed;

Var Set:
var fetch : Value;
var pc : Count

1'(no=2,instr=MUL,d=1,d'=0,t=0)+
1'(no=3,instr=DIV,d=0,d'=0,t=0)+



Using Coloured Petri nets 

F E T C H

[ # n o  f e t c h  =  i ]

@ +  1

C

i f   t i m e ( ) < 2  t h e n  i d _ : = 0  e l s e  ( ) ;

i f  t i m e ( ) < 2  t h e n  p r e d : = 8  e l s e ( ) ;

i f  a d r < > 0  t h e n  p r e d  : =  ! i d _  e l s e ( ) ;  

i f  # i n s t r  f e t c h = B R A  o r e l s e  a d r < > 0  

t h e n  i n c ( i d _ )  e l s e  ( ) ;

! i d _  m o d  5 ;

I RV a l u e

i n

Value
1 ` { n o = 1 , i d _ = 0 , i n s t r = I N T , d = 0 , d ' = 0 , t = 0 } +

1 ` { n o = 2 , i d _ = 0 , i n s t r = I N T , d = 0 , d ' = 1 , t = 0 } +

1 ` { n o = 4 , i d _ = 0 , i n s t r = D I V , d = 2 , d ' = 0 ,  t = 2 } +

1 ` { n o = 5 , i d _ = 0 , i n s t r = I N T , d = 1 , d ' = 0 , t = 3 } +

1 ` { n o = 6 , i d _ = 0 , i n s t r = I N T , d = 0 , d ' = 0 , t = 0 } +

P C

C ount

1`1

c o l o r  B i t  =  b o o l  w i t h ( n , y ) ;

c o l o r  C o u n t  =  i n t  t i m e d ;

c o l o r  L i n e  =  i n t ;

c o l o r  I n s t r  =  w i t h  I N T  |  F P A D D  |  M U L  

|  D I V  |  B R A  |  N U L L ;

c o l o r  D e p  =  i n t ;

c o l o r  W A W  =  i n t ;

c o l o r  B r a  =  u n i o n  n o _ : L i n e  +  t a : L i n e  

+  b : B i t ;

c o l o r  B P U  =  u n i o n  n o : L i n e  +  t : L i n e ;

D E C O D E

@ +  1

[ i f  # i n s t r  d e c o d e < > B R A  t h e n

 # t  d e c o d e  =  # n o  w b  e l s e  t r u e ]

w i n d

V a l u e

D I V
@+  2 4

e x o u t
V a l u e

D M E M
@+  1

w b

V a l u e

WB
@+  1

C

i n p u t  w b ;
o u t p u t  k ;  
a c t i o n
i f  # n o  w b  =  1 0  t h e n
w r i t e _ r e p o r t ( " \ n i n s t r / c y c l e  =  "  ^  
m a k e s t r i n g ( r e a l ( # n o  w b ) / r e a l ( t i m e ( ) - 4 ) )  ^
" \ n T i m e  =  "  ^  m a k e s t r i n g ( t i m e ( ) + 1 ) )
e l s e  ( ) ;
i f  ! p r e d = # i d _  w b  t h e n  1  e l s e  0 ;

s t a l l

V a l u e

4 ` { n o = 0 , i d _ = 0 , i n s t r = I N T ,
    d = 0 , d ' = 0 , t = 0 }

F P A D D
H S N e w # 2

c o n t -

O u t  o f  O r d e r /

C e n t r a l  W i n d /

B r a n c h  P r e d

s t a l l

B r a

1`b (y )

MU L
H S N ew #4

c o n t-
>r es

IN T

[(#i n s t r  ex ec u te=IN T o r el s e
  #i n s t r  ex ec u te =B R A) an d al s o  
  #d  ex ec u te = #n o  w b  an d al s o
  #d ' ex ec u te = #n o  w b ]

@ + 1 C

i n p u t  ex ec u te;
o u tp u t  (b r a,ad r ,b r an c h );
ac t i o n
i f  t i m e() < 3 th en  r :=0 el s e ();
i f  #i n s t r  ex ec u te = B R A th en  i n c (r )
el s e ();
i f  #i n s t r  ex ec u te = B R A an d al s o  

c o n t

In s t r
4`N U L L

1

C o u n t

1`1

b p u

B PU

1`n o (0)+1`t (0)

B PU
@ + 1

1`fetc h

[ad r =0] /
u p d f(p ,
fetc h )

1`i

1`d ec o d e

d ec o d e

ex ec u te

1`ex ec u te

1`d m em

1`d m em

1`w b

i f  ad r  <> 0 th en  1`ad r  el s e i f  
#i n s t r  fetc h =B R A an d al s o  #n o  fetc h =b p u  
th en  1`(#t  fetc h ) el s e 1`(i +n o fetc h )

[k =0] /4`w b

w b

w b

1`i n s t

1`IN T

1

[b r an c h =y ] /
(1`n o _(b r a)+1`ta(ad r )
+1`b (y ))

1`n o (b p u )+1`t (ad r )

1`n o (b p u )+1`t (0)

1`fetc h

1`b (y )

1`n o (b r a)+1`t (ad r )
i f  b r <>b r a th en
1`n o (b r )+1`t (ad )
el s e 1`n o (0)+1`t (ad )

1`n o _(b r )+1`ta(ad ) 1`b (y )



Low-level modelling: “lazy token” 

ring adaptor 

Client 1 

Adaptor 1 

Client 2 Client 3 

Adaptor 2 Adaptor 3 

R G D G D G D R R 



Low-level modelling: “lazy token” 

ring adaptor 

Client 1 

Adaptor 1 

Client 2 Client 1 

Adaptor 1 Adaptor 1 

R G D G D G D R R 

Rr Lr 

La Ra 



Lazy ring adaptor 

Lr 

dum dum 

R 

Ra 

Rr 

La 

G 

D 

t=0 t=1 

Ring 

adaptor 

R G D 

Ra 

Rr 

La 

Lr 

t=0 

(token isn’t 

initially here) 



Lazy ring adaptor 

Lr 

dum dum 

R 

Ra 

Rr 

La 

G 

D 

t=0 t=1 

Ring 

adaptor 

R G D 

Ra 

Rr 

La 

Lr 

t=0->1->0 

(token must be 

taken from the 

right and past to 

the left 



Lazy ring adaptor 

Lr 

dum dum 

R 

Ra 

Rr 

La 

G 

D 

t=0 t=1 

Ring 

adaptor 

R G D 

Ra 

Rr 

La 

Lr 

t=1 

(token is 

already 

here) 



Lazy ring adaptor 

Lr 

dum dum 

R 

Ra 

Rr 

La 

G 

D 

t=0 t=1 

Ring 

adaptor 

R G D 

Ra 

Rr 

La 

Lr 

t=0->1 

(token must be 

taken from the 

right) 



Lazy ring adaptor 

Lr 

dum dum 

R 

Ra 

Rr 

La 

G 

D 

t=0 t=1 

Ring 

adaptor 

R G D 

Ra 

Rr 

La 

Lr 

t=1 

(token is here) 



Logic Circuit Modelling  

Event-driven elements Petri net equivalents 

C 

Muller C-

element 

Toggle 



Logic Circuit Modelling  

Level-driven elements Petri net equivalents 

NAND gate 

x(=1) 

y(=1) 

z(=0) 

NOT gate 

x(=1) y(=0) x=0 

x=1 

y=0 

y=1 

b 

x=0 

x=1 z=0 

z=1 

y=0 

y=1 



Logic Circuit Modelling: examples  

Pipeline data 

Stage 

Data In Data Out 

Pipeline control  

Stage 

Rin 

Ain 

Rout 

Aout 

Data 

Enable 

Pipeline control must  

guarantee:  

•Handshake 

protocols between 

the stages 

•Safe propagation of 

the previous datum 

before the next one 



Event-driven circuit 

C

C

C 1

X O R

I 1

I 4

C 2

T o g g l e

I 3

I 2

R i n

A o u t

A o u t R o u t

A i n

R i n

R o u t

A i n

f a s t - f w d

o p t i o n



Level-driven circuit 

I 2 -

C 1 +

I 2 +

C1-

C1=1 C1=0

n _ A i n / R i n

y 1

I 2 = 1 C2- I1-

n_y2
C2+

I2=0

Rout

I1+C2=1

I1=0

I1=1

C2=0

Rin

En

y1

Rout

I2
C2

C1

I1

y2

n_Aout

n_Ain

C1: y1 = Rin {y2} + y1(Rin + n_Aout + y2)

C2: n_y2 = y1 (n_Aout + n_y2)

I1: n_Ain = y1'
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Level-driven circuit 
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Properties analysed 

• Functional correctness (need to model environment) 

• Deadlocks 

• Hazards: 

– non-1-safeness for event-based 

– non-persistency for level-based 

• Timing constraints 

– Absolute (need  Time(d) Petri nets) 

– Relative (compose with a PN model of order conditions) 



How adequate is PN model? 

• Petri nets have events with atomic action semantics  

• Asynchronous circuits may exhibit behaviour that does 

not fit within this domain – due to  inertia  
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Petri Nets versus Circuits  
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with large inertial 

(RC) delay 

Race between x- and y+ causes nondeterministic 

behaviour on y: 

(1) Either there is a 0-1-0 pulse 

(2) Or nothing 

switching 

threshold 



Modelling. Conclusions 

• Choosing the right level of modelling is crucial 

• Refinement of Petri net models and 

interpretation can be used in hardware design 

• Petri nets are too abstract to capture analogue 

phenomena in circuits  

• However, non-persistence or non-safeness can 

(conservatively) approximate the possibility of 

hazards 
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Asynchronous Circuit Synthesis 

• Synthesis of asynchronous circuits can proceed from 
various behavioural descriptions 

• For example, timing diagrams are a notation that is often 
used by engineers to specify circuit behaviour 

• The model which is close to TDs is Signal Transition 
Graphs 

• STGs are interpreted Petri nets 

• Typically it is sufficient to use limited classes of Petri 
nets, such as Marked Graphs, Free-Choice PNs, or so-
called Free and Controlled Choice PNs 

• Usually 1-safe PNs are enough, but to capture effects 
like OR causality we may need bounded PNs  

 



Asynchronous Circuit Synthesis 

(cont.) 
• Synthesis of asynchronous circuits may also involve 

abstract synthesis from causality constraints, from traces 
or sequential models 

• Petri nets can be used as an intermediate form in which 
concurrency is represented efficiently 

• Circuits can be synthesized from Petri nets by their direct 
(structural) mapping (see Appendix) 

 

• More details on Circuit Verification and Logic 
Synthesis from STGs will follow 

• Modern tools … after lunch! 



Synthesis Issues in Appendix 

• Synthesis of Labelled PNs (LPNs) from 

transition systems 

• Handshake and signal refinement (LPN-to-

STG) 

• Direct synthesis from LPNs 
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Control specification 
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Control specification 
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VME bus example using Petri 

nets 
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STG for the READ cycle 
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Choice: Read and Write cycles 

DSr+ 

LDS+ 

LDTACK+ 

D+ 

DTACK+ 

DSr- 

D- 

DTACK- 

LDS- 

LDTACK- 

DSw+ 

D+ 

LDS+ 

LDTACK+ 

D- 

DTACK+ 

DSw- 

DTACK- 

LDS- 

LDTACK- 

68 



Choice: Read and Write cycles 
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Typical STG synthesis flow 
Specification 

(STG) 

State Graph 

SG with 

CSC 

Next-state 

functions 

Decomposed 

functions 

Gate netlist 

Reachability analysis 

State encoding 

Boolean minimization 

Logic decomposition 

Technology mapping 

Let us consider some  

elements of this flow  

on a simple 

example 
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x z x y  ( )

y z x 

z x y z  
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Circuit synthesis 

• Goal: 

– Derive a hazard-free circuit 

under a given delay model and 

mode of operation 
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Speed independence 

• Delay model 

– Unbounded gate / environment delays 

– Certain wire delays shorter than certain paths in the 

circuit 

 

• Conditions for implementability: 

– Consistency 

– Complete State Coding 

– Persistency 



Conclusions 

• Synthesis of asynchronous circuits can proceed from 
various descriptions, e.g. from timing diagrams (often 
used by engineers) 

• It may also involve abstract synthesis from causality 
constrains, from traces or sequential models 

• Petri nets can be used as an intermediate form in which 
concurrency is represented efficiently 

• Circuits can be synthesized from Petri nets by their direct 
(structural) mapping (see Appendix), or by using logic 
synthesis from STGs 

• More details on Circuit Verification and Logic Synthesis 
from STGs will follow 

• Modern tools … after lunch! 


