
Modelling, Synthesis

and Verification of Hardware

Alex Yakovlev, Victor Khomenko,

Andrey Mokhov and Danil Sokolov

Newcastle University, UK

async.org.uk

workcraft.org

 PN/ACSD’15: Advanced Tutorial, Brussels, June 2015

Contents of lectures

Before lunch:

• Introduction: Petri nets and Hardware Design

• Hardware modelling with Petri nets

• Petri nets and Circuit Synthesis: Basics

• Asynchronous Circuit Verification

• Asynchronous Circuit Synthesis

• Design examples

After lunch:

• Practical exercises with tools Petrify and Workcraft

Bib references

• A.V. Yakovlev, A.M.Koelmans. Petri nets and digital hardware design, Lectures on Petri nets II:
Applications, Advances in Petri Nets, LNCS vol. 1492, Springer 1998, pp. 154-236

• J. Cortadella, M. Kishinevsky, L. Lavagno and A. Yakovlev, Deriving Petri Nets from Finite Transition
Systems, IEEE Transactions on Computers, Vol. 47, Number 8, pages 859-882, Aug. 1998.

• J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A. Yakovlev, Logic Synthesis of
Asynchronous Controllers and Interfaces, Springer, March 2002, ISBN3-540-43152-7

• Concurrency and Hardware Design , Advances in Petri nets, LNCS vol. 2549, Springer, 2002, ISBN
3-540-00199-9, 345pp.

• F. Xia, A. Mokhov, Y. Zhou, Y. Chen, I. Mitrani, D. Shang, D. Sokolov, and A. Yakovlev. Towards
power-elastic systems through concurrency management, IET Computers and Digital Techniques
(CDT), vol. 6, no. 1, pp. 33-42, January 2012.

• A. Mokhov, A. Yakovlev, Conditional Partial Order Graphs: Model, Synthesis, and Application, IEEE
Transactions on Computers, vol. 59, no. 11, pp. 1480-1493, November 2010.

• D. Sokolov, I. Poliakov and A. Yakovlev, Analysis of Static Dataflow Structures, Fundamenta
Informaticae, Vol. 88, No.4, pp. 581-610, IOS Press, 2008.

• I. Poliakov, A. Mokhov, A. Rafiev, D. Sokolov and A. Yakovlev. Automated Verification of
Asynchronous Circuits Using Circuit Petri Nets, Proceedings of the 14th IEEE International
Symposium on Asynchronous Circuits and Systems, Newcastle upon Tyne, UK, April 2008, pp. 161-
170.

• V. Khomenko, M. Koutny and A. Yakovlev. Logic Synthesis for Asynchronous Circuits Based on
STG Unfoldings and Incremental SAT, Fundamenta Informaticae, Volume 70, Issue 1-2, pp 49-73,
IOS Press, 2006.

• D. Shang, F.Burns, A.Koelmans, A.Yakovlev, F. Xia. Asynchronous system synthesis based on
direct mapping using VHDL and Petri nets, IEE Proceedings, Computers and Digital Techniques,
Vol. 151, No.3, May 2004, pp. 209-220

Hardware and Petri Nets:

Introduction

Alex Yakovlev, Victor Khomenko,

Andrey Mokhov and Danil Sokolov

Newcastle University, UK

async.org.uk

workcraft.org

PN/ACSD’15: Advanced Tutorial, Brussels, June 2015

Introduction. Outline

• Role of Hardware in modern systems

• Role of Hardware design tools

• Role of a modeling language

• Why Petri nets are good for Hardware

Design

• History of relationship between

Hardware Design and Petri nets

• Asynchronous Circuit Design

Role of Hardware in modern systems
• Technology allows putting up to several billion transistors on

a chip; Multi-core Systems on Chip are now a reality –

reaching up to 100 CPU cores

• E.g. IBM’s z13 CPU chip (2015) – 22nm CMOS SOI, 4B transistors, 678

mm2, 5GHz, 17 metal layers; IBM’s storage controller up to 7B

• E.g. Intel’s Xeon Phi (2012) – 22nm, 5B transistors, 60 cores

• Hardware and software designs are no longer separate

• Hardware becomes distributed, asynchronous and

concurrent

• Hardware requires power, consumes energy, radiates heat,

electro-magnetic emission

• Hardware causes, and partly recovers from, faults and

failures

Area = 1

Area = 0.5

Dr. Gordon E. Moore’s Law
Integration’s Capacity Doubles Every Two

Years

“The complexity for minimum component costs has

increased at a rate of roughly a factor of two per

year ... Certainly over the short term this rate can be

expected to continue, if not to increase. Over the

longer term, the rate of increase is a bit more

uncertain, although there is no reason to believe it

will not remain nearly constant for at least 10

years.” Gordon E. Moore, Electronic Magazine,

April 19th, 1965

The Scaling Factor

 0.5 = ~0.7

Source:

Tom Williams,

Synopsys

Cost of Scaling

Source: ITRS 2005/2006 90nm 65nm 45nm

Device Length (nm)  1X 0.7X 0.5X

Delay (ps)  1X 0.7X 0.5X

Frequency (GHz)  1X 1.2X 1.45X

Integration Capacity (BTx)  1X 2X 4X

Capacitance (fF)  1X 0.7X 0.5X

Die Size (mm2)  1X 1X 1X

Voltage (V)  1X 0.85X 0.75X

Dynamic Power (W)  1X > 0.7X > 0.5X

Manufacturing (microcents/Tx)  1X 0.35X 0.12X

Source: Tom

Williams, Synopsys

Costs of Scaling

Source: ITRS 2005 90nm 65nm 45nm

VTH (V)  1X 0.85X 0.75X

IOFF (nA/um)  1X ~3X ~9X

Dynamic Power Density (W/cm2)  1X 1.43X 2X

Leakage Power Density (W/cm2)  1X ~2.5X ~6.5X

Power Density (W/cm2)  1X ~2X ~4X

Cu Resistance (Ω)  1X 2X 4X

Interconnect RC Delay (ps)  1X ~2X ~5X

Packaging (cents/pin)  1X 0.86X 0.73X

Test (nanocents/Tx)  1X 1X 1X

Source: Tom Williams,

Synopsys

To lower leakage by process one needs

to give up on performance

Growing Silicon Complexities

• Non-ideal device and
supply/threshold voltage
scaling:

– Leakage,

– Power management and
delivery

• Non-ideal wire scaling:

– Communication,

– Synchronization

• High frequency coupling:

– Noise,

– Signal integrity,

– Delay variation

• Process variation:

– Characterization,

– Error tolerance

• Lower reliability:

– Insulator breakdown,

– Electro-migration,

– Single event upsets

• Manufacture handoff:

– Time and money

Implications of Complexities

• Super-exponential increase in the complexity of the

design process

• No chip-wide synchronization

– Asynchronous design suggested as “challenge”

– Using Globally Async and Locally Sync (GALS) is a

way

• Statistical behavior of transistor / gate / cell (due to

process variability)

• Some signals lost sometimes

– Error-tolerant design

Relationship with uncertainty

(e.g. timing variability)

Timing robustness

Source of variability

analysis:

Yu Cao, Clark, L.T.,

2007

Technology node:

 90nm

12

Role of Hardware design tools

• Design productivity is a problem due to chip

complexity and time to market demands

• Need for well-integrated CAD with simulation,

synthesis, verification and testing tools

• Modelling of system behaviour at all levels of

abstraction with feedback to the designer

• Design re-use is a must but with max technology

independence

Role of Modelling Language

• Design methods and tools require good modelling and
specification techniques

• Those must be formal and rigorous and easy to
comprehend (cf. timing diagrams, waveforms,
traditionally used by logic designers)

• Today’s hardware description languages allow high level
of abstraction, but they are often not capable to expose
the low level (behavioural) details in an adequate form

• Models must allow for equivalence-preserving
refinements, decomposition, analysis and synthesis

• They must allow for non-functional qualities such as
speed, size and power

Why Petri nets are good for

hardware design
• simple and easy to understand graphical capture

• modelling power adjustable to various types of behaviour at different

abstraction levels

• formal operational semantics and verification of correctness (safety and

liveness) properties

• possibility of mechanical synthesis of circuits from various behavioural

models, such as nets, transition systems, trace characterisations

• possibility of synthesis of specifications and visualisation of circuit behaviour

using THEORY OF REGIONS

• Introducing extra aspects such as step semantics and policies into

synthesis helps to address aspects of Globally Asynchronous Locally

Synchronous (GALS) and power management

We see Petri nets more and more as a unifying modelling language for

reasoning about the behaviour of digital circuits and systems, where

various application-specific and engineering-specific modelling notations

can be used as front-end notations.

A bit of history of their relationship

• 1950’s and 60’s: Foundations (Muller & Bartky, Petri,
Karp & Miller, …)

• 1970’s: Toward Parellel Computations (MIT, Toulouse,
St. Petersburg, Manchester …)

• 1980’s: First progress in VLSI and CAD, Concurrency
theory, Signal Transition Graphs (STGs)

• 1990’s: First asynchronous design (verification and
synthesis) tools: SIS, Forcage, Petrify

• 2000’s: Powerful asynchronous design flow (incl.
hardware-software co-design and system-on-chip
design): Balsa, Haste, Elastic Clocks

• 2010’s: Design flows for hybrid sync-async systems with
Petri nets as internal representation: Workcraft, Tools for
GALS …

Introduction to Asynchronous

Circuits

• What is an asynchronous circuit?
– Physical (analogue) level

– Logical level

– Speed-independent and delay-insensitive circuits

• Why go asynchronous?

• Why control logic?

• Role of Petri nets

• Asynchronous circuit design based on Petri nets

What is an asynchronous circuit

• No global clock; circuits are self-timed or self-clocked

• Can be viewed as hardwired versions of parallel and

distributed programs – statements are activated when

their guards are true

• No special run-time mechanism – the “program

statements” are physical components: logic gates,

memory latches, or hierarchical modules

• Interconnections are also physical components: wires,

busses

Synchronous Design

Register

Sender Logic
Register

Receiver

Clock

Data

Data input

Clock

 Tsetup Thold

Timing constraint: input data must stay unchanged within a

setup/hold window around clock event. Otherwise, the latch may fail

(e.g. metastability)

Power must be stable, say at 1Volt to avoid variation of delays

Power

Asynchronous Design

Register

Sender Logic
Register

Receiver

Data

Data input

Req

Req/Ack (local) signal handshake protocol instead of global clock

Causal relationship

Handshake signals implemented with completion detection in data path

Power may fluctuate, e.g. between 0.5V and 1.5V

Ack(nowledge)

Req(est)

Ack

Power

Physical (Analogue) level

• Strict view: an asynchronous circuit is a (analogue)

dynamical system – e.g. to be described by differential

equations

• In most cases can be safely approximated by logic level

(0-to-1 and 1-to-0 transitions) abstraction; even hazards

can be captured

• For some anomalous effects, such as metastability and

oscillations, absolute need for analogue models

• Analogue aspects are not considered in this tutorial

Logical Level

• Circuit behaviour is described by sequences of up (0-to-
1) and down (1-to-0) transitions on inputs and outputs

• The order of transitions is defined by causal relationship,
not by clock (a causes b, directly or transitively)

• The order is partial if concurrency is present

• Two prominent classes of async circuits: speed-
independent (work for any gate delay variations) and
delay-insensitive (for both gate and wire delays)

• A class of async timed (not clocked!) circuits allows
special timing order relations (a occurs before b, due to
delay assumptions)

Relationship with uncertainty

(e.g. timing variability)

Timing robustness

Source of variability

analysis:

Yu Cao, Clark, L.T.,

2007

Technology node:

 90nm

23

Simple circuit example

req1
x

y
+

req2
a

b
+

req3

*

C

ack1

ack2 ack3

out

out=(x+y)*(a+b)

+

+

*

x

y

a

b

out

Data flow graph Control flow graph –

Petri net

req1

req2

ack1

ack2

req3 ack3

Muller C-element

Key component in asynchronous circuit design – like

a Petri net transition

C

x1

y
x2

y=x1*x2+(x1+x2)y

Set-part Reset-part

It acts symmetrically for pairs of 0-1 and 1-0

transitions – waits for both input events to occur

Muller C-element (in CMOS)
Vdd

Gnd

x1

x1

x1

x1 x2

x2

x2

x2

y

y

y

C

x1

y
x2

y=x1*x2+(x1+x2)y

Set-part Reset-part

Why asynchronous is good

• Performance (work on actual, not max delays)

• Robustness (operationally scalable; no clock distribution;
important when gate-to-wire delay ratio changes)

• Low Power (‘change-based’ computing – fewer signal
transitions) and Power-Proportional (activity level is as
much/little as power invested), opportunities for energy-
harvesting systems such as wireless sensor nodes

• Low Electromagnetic Emission (more even
power/frequency spectrum)

• Modularity and re-use (parts designed independently;
well-defined interfaces)

• Testability (inherent self-checking via ack signals)

Async logic can work from AC supply!

2-bit Sequential Dual-rail

Asynchronous Counter

Supply: AC

200mV±100mV

Frequency: 1Mhz
A1.f

A1.t

A0.f

A0.t

Self-timed logic with

completion detection is

robust to power supply

variations

Source: Akgun et al, ASYNC’10

Asynchronous (self-

timed) logic can

provide completion

detection and thus

reduce the interval of

leakage to minimum,

thereby doing

nothing well!

Sync vs Async Design (in terms of

energy efficiency)

Role of Petri Nets

• We concentrate here on control logic

• Control logic is behaviourally more diverse than data
path

• Petri nets capture causality and concurrency between
signalling events, deterministic and non-deterministic
choice in the circuit and its environment

• They allow:
– composition of labelled PNs (transition or place sync/tion)

– refinement of event annotation (from abstract operations down to
signal transitions)

– use of observational equivalence (lambda-events)

– clear link with state-transition models in both directions

Hardware and Petri Nets:

Modelling

Alex Yakovlev, Victor Khomenko,

Andrey Mokhov and Danil Sokolov

Newcastle University, UK

async.org.uk

workcraft.org

PN/ACSD’15: Advanced Tutorial, Brussels, June 2015

Modelling.Outline

• High level modelling and abstract

refinement; processor example

• Low level modelling and logic synthesis;

interface controller example

• Modelling of logic circuits: event-driven and

level-driven parts

• Properties analysed

High-level modelling:Processor

Example
Instruction

Fetch

Instruction

Execution

Program

Counter

Update

Memory

Address

Register Load

Memory

Read

 Instruction

Register Load

Two-word

Instruction

Decode

Two-word

Instruction

Execute

One-word

Instruction

Decode

One-word

Instruction

Execute

High-level modelling:Processor

Example
• Details of further refinement, circuit implementation (by

direct translation) and performance estimation (using
UltraSan) are in:

 A. Semenov, A.M. Koelmans, L.Lloyd and A. Yakovlev. Designing
an asynchronous processor using Petri Nets, IEEE Micro, 17(2):54-
64, March 1997

• For use of Coloured Petri net models and use of
Design/CPN in processor modelling:

 F.Burns, A.M. Koelmans and A. Yakovlev. Analysing superscalar
processor architectures with coloured Petri nets, Int. Journal on
Software Tools for Technology Transfer, vol.2, no.2, Dec. 1998, pp.
182-191.

Using Coloured Petri nets

i n

I R

P C

V a l u e

V a l u e

1 ' f e t c h

[# n o f e t c h = p c]

1 ' f e t c h 1 ' f e t c h

Count

1'(no=1,instr=INT,d=0,d'=0,t=0)+

1'pc

1'(pc+1)

FETCH
@+1

1'1

Color Set:

color Instr = with INT | FPADD | MUL | DIV | BRA | NULL;
color Line = int; color Dep = int;color Target = int; color Count = int timed;
colour Value = record no:Line*instr:Instr*d:Dep*d':Dep*t:Target timed;

Var Set:
var fetch : Value;
var pc : Count

1'(no=2,instr=MUL,d=1,d'=0,t=0)+
1'(no=3,instr=DIV,d=0,d'=0,t=0)+

Using Coloured Petri nets

F E T C H

[# n o f e t c h = i]

@ + 1

C

i f t i m e () < 2 t h e n i d _ : = 0 e l s e () ;

i f t i m e () < 2 t h e n p r e d : = 8 e l s e () ;

i f a d r < > 0 t h e n p r e d : = ! i d _ e l s e () ;

i f # i n s t r f e t c h = B R A o r e l s e a d r < > 0

t h e n i n c (i d _) e l s e () ;

! i d _ m o d 5 ;

I RV a l u e

i n

Value
1 ` { n o = 1 , i d _ = 0 , i n s t r = I N T , d = 0 , d ' = 0 , t = 0 } +

1 ` { n o = 2 , i d _ = 0 , i n s t r = I N T , d = 0 , d ' = 1 , t = 0 } +

1 ` { n o = 4 , i d _ = 0 , i n s t r = D I V , d = 2 , d ' = 0 , t = 2 } +

1 ` { n o = 5 , i d _ = 0 , i n s t r = I N T , d = 1 , d ' = 0 , t = 3 } +

1 ` { n o = 6 , i d _ = 0 , i n s t r = I N T , d = 0 , d ' = 0 , t = 0 } +

P C

C ount

1`1

c o l o r B i t = b o o l w i t h (n , y) ;

c o l o r C o u n t = i n t t i m e d ;

c o l o r L i n e = i n t ;

c o l o r I n s t r = w i t h I N T | F P A D D | M U L

| D I V | B R A | N U L L ;

c o l o r D e p = i n t ;

c o l o r W A W = i n t ;

c o l o r B r a = u n i o n n o _ : L i n e + t a : L i n e

+ b : B i t ;

c o l o r B P U = u n i o n n o : L i n e + t : L i n e ;

D E C O D E

@ + 1

[i f # i n s t r d e c o d e < > B R A t h e n

 # t d e c o d e = # n o w b e l s e t r u e]

w i n d

V a l u e

D I V
@+ 2 4

e x o u t
V a l u e

D M E M
@+ 1

w b

V a l u e

WB
@+ 1

C

i n p u t w b ;
o u t p u t k ;
a c t i o n
i f # n o w b = 1 0 t h e n
w r i t e _ r e p o r t (" \ n i n s t r / c y c l e = " ^
m a k e s t r i n g (r e a l (# n o w b) / r e a l (t i m e () - 4)) ^
" \ n T i m e = " ^ m a k e s t r i n g (t i m e () + 1))
e l s e () ;
i f ! p r e d = # i d _ w b t h e n 1 e l s e 0 ;

s t a l l

V a l u e

4 ` { n o = 0 , i d _ = 0 , i n s t r = I N T ,
 d = 0 , d ' = 0 , t = 0 }

F P A D D
H S N e w # 2

c o n t -

O u t o f O r d e r /

C e n t r a l W i n d /

B r a n c h P r e d

s t a l l

B r a

1`b (y)

MU L
H S N ew #4

c o n t-
>r es

IN T

[(#i n s t r ex ec u te=IN T o r el s e
 #i n s t r ex ec u te =B R A) an d al s o
 #d ex ec u te = #n o w b an d al s o
 #d ' ex ec u te = #n o w b]

@ + 1 C

i n p u t ex ec u te;
o u tp u t (b r a,ad r ,b r an c h);
ac t i o n
i f t i m e() < 3 th en r :=0 el s e ();
i f #i n s t r ex ec u te = B R A th en i n c (r)
el s e ();
i f #i n s t r ex ec u te = B R A an d al s o

c o n t

In s t r
4`N U L L

1

C o u n t

1`1

b p u

B PU

1`n o (0)+1`t (0)

B PU
@ + 1

1`fetc h

[ad r =0] /
u p d f(p ,
fetc h)

1`i

1`d ec o d e

d ec o d e

ex ec u te

1`ex ec u te

1`d m em

1`d m em

1`w b

i f ad r <> 0 th en 1`ad r el s e i f
#i n s t r fetc h =B R A an d al s o #n o fetc h =b p u
th en 1`(#t fetc h) el s e 1`(i +n o fetc h)

[k =0] /4`w b

w b

w b

1`i n s t

1`IN T

1

[b r an c h =y] /
(1`n o _(b r a)+1`ta(ad r)
+1`b (y))

1`n o (b p u)+1`t (ad r)

1`n o (b p u)+1`t (0)

1`fetc h

1`b (y)

1`n o (b r a)+1`t (ad r)
i f b r <>b r a th en
1`n o (b r)+1`t (ad)
el s e 1`n o (0)+1`t (ad)

1`n o _(b r)+1`ta(ad) 1`b (y)

Low-level modelling: “lazy token”

ring adaptor

Client 1

Adaptor 1

Client 2 Client 3

Adaptor 2 Adaptor 3

R G D G D G D R R

Low-level modelling: “lazy token”

ring adaptor

Client 1

Adaptor 1

Client 2 Client 1

Adaptor 1 Adaptor 1

R G D G D G D R R

Rr Lr

La Ra

Lazy ring adaptor

Lr

dum dum

R

Ra

Rr

La

G

D

t=0 t=1

Ring

adaptor

R G D

Ra

Rr

La

Lr

t=0

(token isn’t

initially here)

Lazy ring adaptor

Lr

dum dum

R

Ra

Rr

La

G

D

t=0 t=1

Ring

adaptor

R G D

Ra

Rr

La

Lr

t=0->1->0

(token must be

taken from the

right and past to

the left

Lazy ring adaptor

Lr

dum dum

R

Ra

Rr

La

G

D

t=0 t=1

Ring

adaptor

R G D

Ra

Rr

La

Lr

t=1

(token is

already

here)

Lazy ring adaptor

Lr

dum dum

R

Ra

Rr

La

G

D

t=0 t=1

Ring

adaptor

R G D

Ra

Rr

La

Lr

t=0->1

(token must be

taken from the

right)

Lazy ring adaptor

Lr

dum dum

R

Ra

Rr

La

G

D

t=0 t=1

Ring

adaptor

R G D

Ra

Rr

La

Lr

t=1

(token is here)

Logic Circuit Modelling

Event-driven elements Petri net equivalents

C

Muller C-

element

Toggle

Logic Circuit Modelling

Level-driven elements Petri net equivalents

NAND gate

x(=1)

y(=1)

z(=0)

NOT gate

x(=1) y(=0) x=0

x=1

y=0

y=1

b

x=0

x=1 z=0

z=1

y=0

y=1

Logic Circuit Modelling: examples

Pipeline data

Stage

Data In Data Out

Pipeline control

Stage

Rin

Ain

Rout

Aout

Data

Enable

Pipeline control must

guarantee:

•Handshake

protocols between

the stages

•Safe propagation of

the previous datum

before the next one

Event-driven circuit

C

C

C 1

X O R

I 1

I 4

C 2

T o g g l e

I 3

I 2

R i n

A o u t

A o u t R o u t

A i n

R i n

R o u t

A i n

f a s t - f w d

o p t i o n

Level-driven circuit

I 2 -

C 1 +

I 2 +

C1-

C1=1 C1=0

n _ A i n / R i n

y 1

I 2 = 1 C2- I1-

n_y2
C2+

I2=0

Rout

I1+C2=1

I1=0

I1=1

C2=0

Rin

En

y1

Rout

I2
C2

C1

I1

y2

n_Aout

n_Ain

C1: y1 = Rin {y2} + y1(Rin + n_Aout + y2)

C2: n_y2 = y1 (n_Aout + n_y2)

I1: n_Ain = y1'

I1: Rout = y2' or Rout = delay (n_y2)

Level-driven circuit

I 2 -

C 1 +

I 2 +

C1-

C1=1 C1=0

n _ A i n / R i n

y 1

I 2 = 1 C2- I1-

n_y2
C2+

I2=0

Rout

I1+C2=1

I1=0

I1=1

C2=0

Rin

En

y1

Rout

I2
C2

C1

I1

y2

n_Aout

n_Ain

C1: y1 = Rin {y2} + y1(Rin + n_Aout + y2)

C2: n_y2 = y1 (n_Aout + n_y2)

I1: n_Ain = y1'

I1: Rout = y2' or Rout = delay (n_y2)

Set-part

Level-driven circuit

I 2 -

C 1 +

I 2 +

C1-

C1=1 C1=0

n _ A i n / R i n

y 1

I 2 = 1 C2- I1-

n_y2
C2+

I2=0

Rout

I1+C2=1

I1=0

I1=1

C2=0

Rin

En

y1

Rout

I2
C2

C1

I1

y2

n_Aout

n_Ain

C1: y1 = Rin {y2} + y1(Rin + n_Aout + y2)

C2: n_y2 = y1 (n_Aout + n_y2)

I1: n_Ain = y1'

I1: Rout = y2' or Rout = delay (n_y2)

Reset-part

Level-driven circuit

I 2 -

C 1 +

I 2 +

C1-

C1=1 C1=0

n _ A i n / R i n

y 1

I 2 = 1 C2- I1-

n_y2
C2+

I2=0

Rout

I1+C2=1

I1=0

I1=1

C2=0

Rin

En

y1

Rout

I2
C2

C1

I1

y2

n_Aout

n_Ain

C1: y1 = Rin {y2} + y1(Rin + n_Aout + y2)

C2: n_y2 = y1 (n_Aout + n_y2)

I1: n_Ain = y1'

I1: Rout = y2' or Rout = delay (n_y2)

Without y2 in

Set part of y1

this trace can

happen:

I2+

C1+

I2-

C2+

I1+

C1-

I2+
C2-

C1+

Level-driven circuit

I 2 -

C 1 +

I 2 +

C1-

C1=1 C1=0

n _ A i n / R i n

y 1

I 2 = 1 C2- I1-

n_y2
C2+

I2=0

Rout

I1+C2=1

I1=0

I1=1

C2=0

Rin

En

y1

Rout

I2
C2

C1

I1

y2

n_Aout

n_Ain

C1: y1 = Rin {y2} + y1(Rin + n_Aout + y2)

C2: n_y2 = y1 (n_Aout + n_y2)

I1: n_Ain = y1'

I1: Rout = y2' or Rout = delay (n_y2)

Without y2 in

Set part of y1

this trace can

happen:

I2+

C1+

I2-

C2+

I1+

C1-

I2+
C2-

disabling

C1+

Properties analysed

• Functional correctness (need to model environment)

• Deadlocks

• Hazards:

– non-1-safeness for event-based

– non-persistency for level-based

• Timing constraints

– Absolute (need Time(d) Petri nets)

– Relative (compose with a PN model of order conditions)

How adequate is PN model?

• Petri nets have events with atomic action semantics

• Asynchronous circuits may exhibit behaviour that does

not fit within this domain – due to inertia

0*

0*

0->1

0->1

a

b

a

b

a b

00

01

11

10

Petri Nets versus Circuits

x- y+
AND

x
y

1->0
0*

1

p1

p2 p3

p1

p2 p3

x- y+

y+
y+ disabled

(no memory

of past)

x

y

z

z

with large inertial

(RC) delay

Race between x- and y+ causes nondeterministic

behaviour on y:

(1) Either there is a 0-1-0 pulse

(2) Or nothing

switching

threshold

Modelling. Conclusions

• Choosing the right level of modelling is crucial

• Refinement of Petri net models and

interpretation can be used in hardware design

• Petri nets are too abstract to capture analogue

phenomena in circuits

• However, non-persistence or non-safeness can

(conservatively) approximate the possibility of

hazards

Hardware Synthesis with Petri

Nets: Basics

Alex Yakovlev, Victor Khomenko,

Andrey Mokhov and Danil Sokolov

Newcastle University, UK

async.org.uk

workcraft.org

PN/ACSD’15: Advanced Tutorial, Brussels, June 2015

Asynchronous Circuit Synthesis

• Synthesis of asynchronous circuits can proceed from
various behavioural descriptions

• For example, timing diagrams are a notation that is often
used by engineers to specify circuit behaviour

• The model which is close to TDs is Signal Transition
Graphs

• STGs are interpreted Petri nets

• Typically it is sufficient to use limited classes of Petri
nets, such as Marked Graphs, Free-Choice PNs, or so-
called Free and Controlled Choice PNs

• Usually 1-safe PNs are enough, but to capture effects
like OR causality we may need bounded PNs

Asynchronous Circuit Synthesis

(cont.)
• Synthesis of asynchronous circuits may also involve

abstract synthesis from causality constraints, from traces
or sequential models

• Petri nets can be used as an intermediate form in which
concurrency is represented efficiently

• Circuits can be synthesized from Petri nets by their direct
(structural) mapping (see Appendix)

• More details on Circuit Verification and Logic
Synthesis from STGs will follow

• Modern tools … after lunch!

Synthesis Issues in Appendix

• Synthesis of Labelled PNs (LPNs) from

transition systems

• Handshake and signal refinement (LPN-to-

STG)

• Direct synthesis from LPNs

Control specification

A+

B+

A-

B-

A

B

A input

B output

Timing Diagram Signal Transition Graph

(STG)

61

Control specification

A+

B+

A-

B-

A B

62

Control specification

A+

B-

A-

B+

A B

63

Control specification

A+

C-

A-

C+
A

C

B+

B- B

C C

64

Control specification

A+

C-

A-

C+

B+

B-

C C C

A

B

65

66

VME bus example using Petri

nets

Device

LDS

LDTACK

D

DSr

DSw

DTACK

VME Bus

Controller

Data

Transceiver

Bus
DSr

LDS

LDTACK

D

DTACK

Read Cycle

67

STG for the READ cycle

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS- LDTACK-

DSr+

LDS

LDTACK

D

DSr

DTACK

VME Bus

Controller

Choice: Read and Write cycles

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

DTACK-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw-

DTACK-

LDS-

LDTACK-

68

Choice: Read and Write cycles

DTACK-

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw-
69

70

Typical STG synthesis flow
Specification

(STG)

State Graph

SG with

CSC

Next-state

functions

Decomposed

functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Let us consider some

elements of this flow

on a simple

example

71

x

y

z

x+

x-

y+

y-

z+

z-

Signal Transition Graph (STG)

x

y

z

Specification

72

x

y

z

x+

x-

y+

y-

z+

z-

Token flow

73

x+

x-

y+

y-

z+

z-

xyz

000
x+

100
y+ z+

z+ y+

101 110

111

x-

x-

001

011
y+

z-

010

y-

State graph

74

x z x y  ()

y z x 

z x y z  

Next-state functions
xyz

000
x+

100
y+ z+

z+ y+

101 110

111

x-

x-

001

011
y+

z-

010

y-

75

x

z

y

Gate netlist

x z x y  ()

y z x 

z x y z  

76

Circuit synthesis

• Goal:

– Derive a hazard-free circuit

under a given delay model and

mode of operation

77

Speed independence

• Delay model

– Unbounded gate / environment delays

– Certain wire delays shorter than certain paths in the

circuit

• Conditions for implementability:

– Consistency

– Complete State Coding

– Persistency

Conclusions

• Synthesis of asynchronous circuits can proceed from
various descriptions, e.g. from timing diagrams (often
used by engineers)

• It may also involve abstract synthesis from causality
constrains, from traces or sequential models

• Petri nets can be used as an intermediate form in which
concurrency is represented efficiently

• Circuits can be synthesized from Petri nets by their direct
(structural) mapping (see Appendix), or by using logic
synthesis from STGs

• More details on Circuit Verification and Logic Synthesis
from STGs will follow

• Modern tools … after lunch!

