
The main area of the window is occupied by the Editor panel where the model is displayed for editing and
simulation. The frequently used editing and simulation actions are accessible at the right side via Editor
tools, Tool controls and Property editor panels, that are detailed below. The Output panel at the bottom
provides information on the currently executed task.

Editor tools
This panel provide access to frequently used tools for capturing, modification and simulation of the graph
models.

Some of the tools are implemented in the core of Workcraft and are available in all the plugins. These
include selection, connection and text note tools.

 - selection tool for editing, moving, deleting, and grouping the model elements (can also be

activated by pressing S). When this tool active you can select the graph elements and modify them
as follows.

Click a graph element to select it. Outline a rectangular area to select several elements.
Outline from-right-to-left for adding fully covered elements and from-left-to-right for adding
any touched elements.

Hold Shift to include elements into selection and Ctrl to exclude elements from selection.

Press Ctrl+A to select all components (Edit→Select all). Press the exclamation mark to
inverse the selection (Edit→Inverse selection). Press Esc to resets the selection
(Edit→Deselect).

Selected components can be removed by pressing Delete (Edit→Delete), cut by pressing
Ctrl+X combination of keys (Edit→Cut), copied by pressing Ctrl+C keys (Edit→Copy),
and a previously copied part of a model can be inserted by pressing Ctrl+V keys
(Edit→Paste).

Double click inside a group to enter it (same action as Page↑). Double-click outside the
current group to go one level up (same action as Page↓).

Use left mouse button or ←, ↑, →, ↓ to move selected components.

 - text note generator for creating textual comments (can also be activated by pressing N).

 - connection tool for connecting the model nodes with arcs (can also be activated by pressing

C). When the connection tool is active, click on the source node to initiate a connection, then click
on the destination node to complete the connection. You can hold Ctrl key to connect nodes in
continues mode, so that each destination node becomes a source node for the next connection.



Most of the tools are model-specific and are implemented by the corresponding plugin. For example, the
Directed Graph plugin implements a basic vertex generator tool while the Petri net plugin implements
place generator, transition generator and simulation tools.

 - create Petri net places (can also be activated by pressing P).

 - create Petri net transitions (can also be activated by pressing T).

 - activate simulation of the model (can also be activated by pressing M).

Tool Controls
This panel provides access to the extended functionality (if present) of a selected tool. Of the generic tools
only the Selection tool and Simulation tool have such extended functionality. Let us consider them in
detail.

Selection controls

The selection tool controls provide the means to transform the selected nodes and connections of the
model.

 - combine the selected elements into a group (or press Ctrl+G).

 - combine the selected elements into a page (or press Alt+G).

 - decomposes the selected group into the comprising elements (or press Ctrl+Shift+G). .

 - level up action: if the focus is currently inside a group, then pressing this button shifts the

focus to the container group or the root of the model. The same can be done by pressing Page↑ or
double-clicking outside the group boundaries.

 - level down action: if a single group is selected, then pressing this button enters this group.

The same can be done by pressing Page↓ or double-clicking inside the group boundaries.

 - flip selected elements horizontally (or press Ctrl+F).

 - flip selected elements vertically (or press Ctrl+Shift+F).

 - rotate selected elements clockwise (or press Ctrl+R).

 - rotate selected elements counterclockwise (or press Ctrl+Shift+R).



The simulation tool controls provides the means to analyse and
navigate the simulation data. There are two sources of
simulation data:

Trace - the base sequence of events, often from an
external tool, e.g. a trace leading to a deadlock.

Branch - the deviated sequence of events executed by
explicitly clicking the excited nodes of the model.

Usually the event names correspond to the model nodes whose
execution changed the state of the model. The sequences of
events are recorded in the corresponding columns of the
Trace–Branch table. You can click the name of the event in
either column to restore the model state just before that event
has happened.

The navigation through the simulation data can be done with the
following buttons:

Note the difference between groups and pages. Groups are just unnamed decorations for several nodes,
while pages are named nodes containing other nodes.

Simulation controls

 - execute the trace and branch events starting from the current position.

 - stop the execution and reset the trace and branch data.

 - undo the last event that lead to the current state.

 - execute the next event in the trace or branch.

 - randomly execute events from a pool of events that are enabled in the current state.

 - copy the trace, the branch and the current simulation state into the clipboard.

 - paste the trace, the branch and the current simulation state from the clipboard.

 - save the current state of the model as its initial state.

The slide bar under the navigation buttons controls the speed of playback for the existing or randomly
generated sequence of events.

Property editor
The Property editor panel enables displaying and modifying the attributes of a model and its elements. It
has four distinctive modes of operation:



Element properties. When a single element is selected its properties are displayed and are
available for editing.

Combined properties. When a group of elements is selected a “combined” list of their properties is
displayed. Those properties which have the same name and class are combined under one editor
item and its modification will propagate too all selected components of relevant class. If the initial
value of the combined property cannot be agreed between the selected components an empty grey
box is shown.

Model properties. When no elements is selected the model-specific properties are displayed. This
can be seen in the Policy Net plugin where a list of bundles is shown with a possibility to edit their
names, colours and the list of bundled transitions.

Template properties. When a node generator or connection tool is activated, their template
properties are displayed and can be modified. All all subsequently created nodes or connections
inherent these template properties. To reset the template properties for a particular tool to their
default settings just double-activate the tool (i.e. activate the tool while it is already selected).

The base list of properties depends on the element type but may be extended by the plugins implementing a
particular interpreted graph model. The elements available in all the models are nodes, connections, groups
and text notes.

Tips and Tricks
Selection

Hold Shift to include objects into a selection and Ctrl to exclude objects from a selection.

Outline a selection rectangle from-left-to-right for adding objects that are inside the selection
region, and from-right-to-left for adding objects touched by the selection region.

Press Crtl+A to select everything or Ctrl+I to inverse the selection.

Use left mouse button or ←, ↑, →, ↓ to move selected components.

Selected components can be removed by pressing Delete.

Press Ctrl+A to select all objects or Esc to reset selection.

Clipboard and History

Clipboard operations are allowed between the models of the same type: Ctrl+C to copy,
Ctrl+X to cut and Ctrl+V to insert.

History of modifications can be browsed: Ctrl+Z to undo and Ctrl+Shift+Z to redo.

Navigation and Grouping

Ctrl+G combines selected objects into a group and Ctrl+Shift+G splits selected groups
into individual objects.

Press Page↓ or double-click a group to enter it. Press Page↑ or double-click outside a group
to leave it.

Scroll the mouse wheel forward to zooms in and backward to zoom out. Alternatively press
+ to zoom in and − to zoom out. Press Ctrl+0 to restore the default scale.

Press Ctrl+F to fit the selection into the screen or Ctrl+T to centre it.

Use the middle mouse button or Ctrl+right mouse button or Ctrl+←, ↑, →, ↓ to pan the view.

Simulation

Use [ and ] keys to navigate through the simulation trace.

In Signal-State table the values of excited signals are depicted in bold font.



Symbol Timing diagram

Synthesis and verification of C-element
C-element [http://en.wikipedia.org/wiki/C-element] is a latch that synchronises the phases of its inputs. A
symbol for a 2-input C-element and its timing diagram are shown in the figures below. Initially all the
signals are in the low state. When both inputs in1 and in2 go high, the output out also switches to logical
1. It stays in this state until both inputs go low, at which stage the output switches to logical 0.

Modelling

Let us model the C-element behaviour using STG formalism. Create a new STG work called stg-celement
and translate the sequence of events in the timing diagram into a sequence of STG transitions. Basically
you need to create a signal transition for each event of the timing diagram and capture the causality
between these events by means of directed arcs between signal transitions. Recreate the following STG
model in Workcraft.

Start with the reset phase of the C-element where out- event is caused by in1- and in2- events:

Activate the signal transition generator . Pay attention to the hint at the bottom of the screen:

Click to create a falling (or rising with Ctrl) transition of an output (or input with Shift) signal.

Click the Editor panel in the location where you want the out- transition to appear.

Hold Shift and click in the desired location of in1- transition. The default name for the input
signal is in, therefore you need to rename it. Go to the Property editor and change in name from in
to in1.

Create in2- transition the same way as in1-.

Activate connection tool . Pay attention to the hints at the bottom of the screen. Initially the

hint says Click on the first component. After the first component is chosen, the hint changes to Click
on the second component or create a node point. Hold Ctrl to connect continuously.

Click in1-, move the mouse pointer to the out- transition and click again. A causality arc from
in1- to out- will be created.

Repeat the connection procedure to capture causality between in2- and out- transitions.



Similarly capture the set phase of the C-element:

Create transitions in1+, in2+ and out+. As before, rename the default in signal to in1 and in2
respectively.

Create causality arcs from in1+ to out+ and from in2+ to out+.

Use the selection tool  to rearrange the STG nodes similar to the following figure.

Now connect the set and reset portions of the specification:

The same as before, use connection tool  to introduce causality from out+ to in1- and to

in2-.

Create an arc from out- to in1+, but this time instead of a straight line connection use a polyline.
After choosing the source of the connection (out- transition) click aside of the existing transitions -
this will create a node point of a polyline. Continue forming the shape of the polyline by creating its
node points, and finally choose the destination transition in1+.

Repeat the same procedure for creating a polyline connection from out- to in2+.

Finally, specify the initial state of the C-element in accordance to the starting point of the timing diagram:

Activate the selection tool .

Select the arc from out- to in1+ and in the Property editor set the Tokens value to 1.

Similarly put a token on the arc from out- to in2+.

The resulting STG should look as follows.

Validation and verification of specification

Activate the simulation tool  and exercise the obtained STG model. Click one of the enabled signal

transitions (they are highlighted in orange) to evaluate the STG into the next state. Note that the sequence



of fired transitions is recorded in the simulation trace that is somewhat similar to the original timing
diagram. Check that the simulation traces correspond to the intended behaviour of C-element.

Before proceeding to the synthesis of the C-element it is a good idea to verify that its specification meets
essential requirements, e.g. that it is consistent, is free from deadlocks, and output-persistent.

To verify the signal consistency (i.e. that the rising and falling phases of each signal alternate in all
possible execution traces) select Tools→Verification→Consistency [MPSat] menu item. Similarly, for
deadlock checking select Tools→Verification→Deadlock [MPSat], and for output-persistency select
Tools→Verification→Output persistence (without dummied) [MPSat] menu item.

If the specification violates any of these properties then a trace leading to the problematic state will be
reported. This trace can be simulated for better understanding the reported issues and for correcting them
in the specification.

Synthesis

The STG specification can now be synthesised into an asynchronous circuit implementation either with
Petrify or MPSat backend tools via Tools→Synthesis menu.

A complex gate solution obtained with Petrify (Tools→Synthesis→Complex gate [Petrify] menu item) is
as follows: ( Note that solution is not unique and you may get a slightly different equation. )

[out] = in2 (in1 + out) + in1 out;

By opening the parenthesis one can obtained the following equation:

[out] = in1 in2 + in2 out + in1 out;

This equation can be directly mapped into an AND-OR complex gate whose function is Z = A*B + C*D +
E*F ; let us call it AO222 gate.

Circuit designers use hardware description languages, such as Verilog
[http://en.wikipedia.org/wiki/Verilog] or VHDL [http://en.wikipedia.org/wiki/VHDL], to precisely describe
the circuit. For example, the association of the C-element ports to the AO222 gate pins can be
described by the following Verilog module (if you are not familiar with Verilog you can safely skip
this part as it is not required by the rest of the tutorial):

module celement (in1, in2, out);
  input in1;
  input in2;
  output out;
  AO222 inst_c (.A(in1), .B(in2), .C(in2), .D(out), .E(in1), .F(out), .Z(out));
endmodule

Circuit capturing

Create a new Digital Circuit work called circuit-celement-cg and capture the implementation suggested by
Petrify in form of a gate-level netlist. In the future versions of Workcraft the derivation of a circuit from
the synthesis output will be automated, but for now please do it manually.



Activate functional generator  and click in the desired position of the AND-OR complex

gate.

Activate selection tool .

Select the only pin of the newly created function component.

In the Property editor change the Name of the pin to Z and modify its Set function to A*B+C*D+E*F.

Select the function component and in the Property editor change its rendering type from Box to
Gate.

Activate port generator . Pay attention to the hint at the bottom of the screen: Click to create

an output port (hold Shift for input port).

Click in intended location of the output port. Note that by default the port will be named out1 - you
can change this name to out later.

Hold Shift and click in the desired locations of the input ports – they will be automatically
assigned in0 and in1 names.

Switch to the selection tool. Choose the output port, go to the property editor and change port Name
to out. Similarly change the name of input port in0 to in2.

Activate connection tool .

Connect input ports in1 to the 1st and 5th pins of the complex gate (A and E respectively).

Connect input ports in2 to the 2nd and 3rd pins of the complex gate (B and C respectively).

Connect the output pin of the gate to the output port out and to the 4th and 6th inputs of the gate (D
and F respectively).



Optional simplification

You may want to tidy up the circuit schematic and make it more readable by adding forks into the

wires. This can be done using the joint generator  to create the wire split points and then

connect wires to them. If you create a connection to/from a wire then a joint will be automatically
inserted. This resultant circuit should look similar to the following diagram; this implementation can
be downloaded circuit-celement-cg.work (3.09 KiB, 5d ago) .

Verification of implementation

Activate the simulation tool  and simulate the captured complex gate implementation of the C-

element. Ports, pins and wires are colour-coded: blue means low level and red means high level of the
signal. Excited pins and ports are highlighted in orange.

Click one of the excited pins to toggle its logical value. Similar to the STG simulation, the sequence of
signal events is recorded in the simulation trace and can be subsequently replayed for analysing the
circuit's behaviour.

To conduct formal verification the circuit has to be converted into an STG. Normally this is done silently
by the tool, but it is possible to view the intermediate circuit-STG via Tools→Conversion→Signal
Transition Graph. A result of such conversion for the C-element circuit is shown below.

Note that if the C-element's inputs are not restricted in any way then they can change in an unexpected
manner and cause malfunction of the circuit. This can be confirmed by checking the circuit for hazards
Tools→Verification→Hazards [MPSat] – the circuit has a hazard after the following trace: 0: in2+,
in1+.

Play this trace to discover that indeed, by the end of the trace the output of the C-element is excited and
ready to switch to logical 1, but an unexpected in1- or in2- transition would disable it, that does not fit
the original STG specification.

The STG specification contains some information that is not available in the circuit, namely the behaviour
of the environment. The circuit can work correctly only in an environment that respects its contract



specified by the original STG. In other environments the circuit may exhibit hazards, deadlocks, etc.

Therefore, to conduct formal verification of the circuit one has to restrict the environment behaviour in
such a way that the circuit only receives those inputs that are allowed by the STG specification. This can
be achieved as follows:

In the circuit editor make sure that no components are selected (click on the editor canvas).

In the property editor choose the Environment URI property and select the work file with the
original STG specification.

Repeat the verification procedure to check if the circuit is free of hazards under the well behaved
environment. Also check the circuit for deadlocks and verify if it conforms to the environment
specification. All these verification steps can be run via Tools→Verification→Conformation, deadlock and
hazard (reuse unfolding) [MPSat] menu.

Large gates like AO222 may not be available in the technology library and thus other implementations of C-
element using smaller gates are of interest. However, it is very easy to make a mistake when designing
asynchronous circuits, and so any such implementation has to be formally verified against the original STG
specification.

Download the following candidate C-element implementation circuit-celement-decomposed.work (3.78
KiB, 5d ago)  and verify that it conforms to the STG specification and is free from deadlocks and hazards.

Note that the correctness of this implementation depends on the isochronic forks assumption: the
difference in arrival times of a signal to the ends of a wire fork is negligible compared to any gate delay. If
this assumption is violated, the above implementation can exhibit hazards. Download the following C-
element implementation circuit-celement-decomposed-hazard.work (3.9 KiB, 5d ago)  where a delay in a
wire fork is made explicit (modelled by a buffer). Formally verify this model, inspect the violation trace,
and explain what can go wrong in it.



Optimising Asynchronous Pipelines Using
Wagging
In this practical we consider asynchronous pipelines and use formal techniques to model and analyse them,
and to improve their performance.

Static Data-Flow Structures

Many systems can be abstractly represented by Static Data-Flow Structures [1], which are closely related
to pipelines. This abstraction separates the structure and the function of the system from the
implementation details of its components.

The possibility of formally modelling and reasoning about the system at this high-level architectural level
is crucial, as the design decisions made at this level will affect all the subsequent stages of the design.
Moreover, optimisations performed at this level are likely to have a much stronger impact than micro-
optimisations applied towards the end of the design process.

Wagging

Wagging [2] is a technique for improving the throughput of a pipeline by replicating the operational unit of
a stage and cycling which copy (slice) the tokens should go though - see the picture below. (The analogy is
with a dog wagging its tail: 2-way wagging has been applied to the 2nd stage in the picture, which means
that the 1st token entering the stage goes into the upper slice, the 2nd token goes into the lower slice, the 3rd

token goes into the upper slice, etc.) The tokens exit the stage in the same order they have entered it. It is
assumed that the pipeline is implemented as an electronic circuit (hence the term `logic' is used instead of
`operational unit'), though wagging can be applied to almost any kind of pipelines.

Each stage has a wagging level - the number of copies of logic it contains. The inputs and outputs of each
slice are connected to mixers collecting the data from the outputs of one wagging logic stage and then
delivering it to the current slice of the next stage. The mixers also latch the data to allow the connected
slices to work independently. The above picture shows an example pipeline with a combination of non-
wagging and wagging logic stages. These are connected using a selection of mixers.

Advantages of wagging:

can significantly increase the throughput of the pipeline;



requires almost no effort from the designer (the technique can be automated to a large extent);

the energy consumption of wagging circuits is nearly identical to the original non-wagging circuit
which forms each of the slices [2].

Disadvantages of wagging:

logic has to be replicated, which incurs circuit area overhead;

latency is increased due to mixers.

Conceptual RISC pipeline

Consider the following conceptual RISC pipeline. Recall that in asynchronous pipelines tokens must be
separated by empty registers, and so a cycle with N tokens must contain at least 2N+1 registers to avoid
deadlocks, and the best performance is achieved with 3N registers, like in the pipeline below.

Re-create this Dataflow Structure model in Workcraft. For simplicity, set all the register delays to 0, and
the delays of combinational logic blocks to 1, except for MemAccess whose delay should be set to 3,
making it the bottleneck. Make sure that token colours are all different.

Simulate this model to get the feel of the spread token semantics [3]. Note that:

the enabled elements are highlighted in orange - these are:

empty registers which can accept a token (only possible when the next register is empty);

registers which can lose a token (this is only possible after the token has `spread' to the next
register);

combinational logic that is ready to be evaluated or reset (the corresponding box turns grey
when the logic is evaluated, and turns back to white when the logic is reset);

the delays are ignored during simulation;

with spread token semantics, a token can be spread across several adjacent registers, and the colours
of the tokens are chosen to help distinguishing which registers contain copies of the same token.

Now analyse the performance of this pipeline with the cycle analiser  tool. In the Tool controls

window one can see the result of the analysis: there is a single cycle with the estimated throughput 0.714.
Indeed, the total delay of the pipeline is 1+1+1+3+1=7, and there are 5 tokens in it, so the throughput is
5/7≈0.714. Moreover, the bottleneck MemAccess is highlighted in red.

The performance of this pipeline can be improved using wagging. Select the bottleneck MemAccess and
apply 2-way wagging to it: Tools→Wagging→2-way wagging. This transformation replicates the
MemAccess block and adds some control structures (for the purposes of this practical, the gory details are
swept under the carpet abstracted away for the sake of presentation). Now the tokens entering this stage of
the pipeline alternate between choosing the upper and lower branch, and exit the stage in the same order
they have entered it. This has an effect of halving the stage delay: Indeed, the Cycle analiser shows that the
throughput has increased from 0.714 to 0.909:



To further improve the performance of the pipeline, 3-way wagging can be applied instead of 2-way
wagging: Indeed, the delay of MemAccess is three times the delay of the other stages. Undo the 2-way
wagging by pressing Ctrl+Z, select MemAccess, and apply 3-way wagging to it: Tools→Wagging→3-way
wagging. This increases the throughput to 1.

Note that there are several cycles with infinite throughput - these are formed by the control structures
which have 0 delays and can be ignored. Only the two cycles shown at the top are relevant - they
correspond to the two branches formed due to wagging.

By clicking on a cycle in the Tool control window one can highlight it in the model, with the
bottleneck(s) of this cycle shown in red (if any). If no cycle is selected, the bottleneck(s) of the whole
model are shown.

More realistic RISC pipeline

The following ARISC pipeline was adapted from [4]. All register delays were set to 0, and delays of most
of the logic blocks were set to 1. The only exceptions are the Arith. and Data Mem. blocks with the
delays 2 and 4, respectively.



Download this model: dfs-arisc.work (3.91 KiB, 4h ago) .

Analyse this model using cycle analiser  tool.

By default the Tool control window shows 10 cycles with the worst throughput – this is controlled by
the Cycle count field in this window. You can increase this number to see all the cycles in the model.

The throughput of the whole pipeline is determined by the throughput of its slowest cycle, e.g. the
throughput of the above pipeline is 0.105.

Examine the cycles with the suboptimal throughput, and intelligently apply wagging to improve the
performance of this pipeline. Try to increase the throughput from 0.105 to 0.125. Solution: 
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