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Abstract. Signal Transition Graphs (STG) are a formalism for the dpson of asynchronous
circuit behaviour. In this paper we propose (and justifypenfal semantics of non-deterministic
STGs with dummies and OR-causality. For this, we introdiigedoncept obutput-determinagy
which is a relaxation of determinism, and argue that it isoeable and useful in the speed-inde-
pendent context.

We apply the developed theory to improve an STG decompasatigorithm used to tackle the state
explosion problem during circuit synthesis, and presentesexperimental data for this improved
algorithm and some benchmark examples.

Keywords: output-determinacy, decomposition, STG, asynchronagsits, OR-causality.

1. Introduction

Asynchronous circuits are a promising type of digital circuits. They hawedgower consumption
and electro-magnetic emission, no problems with clock skew and related ssbis,isnd are funda-
mentally more tolerant of voltage, temperature and manufacturing proceasorss [CKK™02]. The
International Technology Roadmap for Semiconductors report on D@JIR05] predicts that 22% of
the designs will be driven by handshake clocking (i.e. asynchronou)13, and this percentage will
raise up to 40% in 2020.



2 V. Khomenko, M. Schaefer and W. Vogler / Output-Determinacy anttAsynous Circuit Synthesis

Figure 1. OR-causality (the ‘interesting’ part of the ST@iighlighted):a™ andb™ are concurrent inputs, and the
outputz™ can be produced upon arrival of either of them. Note thatilettansitions labelled™ are in dynamic
auto-conflict, i.e. the specification is non-deterministiowever, it still can be implemented by the deterministic
circuit[z] = a V b.

In this paper we are concerned with an important subclass of asymetg@ircuits, calledpeed-
independentircuits, i.e. circuits which work correctly regardless of their gates’ del#lye wires are
assumed to have negligible delays, or, alternatively, wire forks areressto be isochronic)Signal
Transition Graphs (STGYChu87] are a formalism for the specification of such circuits. They are a
class of interpreted Petri nets in which transitions are labelled with the risohéafiimg edges of circuit
signals.

When a circuit is synthesised from an STG, it is often assumed that thificgian is deterministic
(in the sense of automata and formal language theory), and its semanticsés tiéts possible traces,
i.e. its language. As the final implementation must be deterministic, it may seenmabéseo confine
oneself to deterministic specifications only. However, sometimes this turns betttmo restrictive in
practice. There are several situations which naturally give rise to etardinistic specifications which
still can be synthesised:

Dummy transitions For convenience of modelling, the designers oftendisamytransitions in STGs,
which are ‘silent’ transitions not corresponding to any signal changeh &ansitions make the
STG non-deterministic.

OR-causality When a safe Petri net is used for modelling a situation where the system tesptmd
to any of several possible stimuli in the same way, non-determinism naturssaas shown in
Fig. 1. OR-causality has been studied in [YK86].
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1OR-causality can also be modelled as a non-safe Petri net withoutaterrnism [KKTV94, YKK*96], but in practice safe
Petri nets are preferable as they are much easier to analyse.
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Figure 2. Non-determinism due to hiding. After hiding signaandb, the STG becomes non-deterministic, but
it can be implemented (the system can simply waitf@nd produce: upon receiving it; inputl can be ignored).
Note that the two branches after the non-deterministicaghare not entirely symmetric, as the upper one has an
inputd which is not present in the lower one.

Hiding of signals Non-determinism naturally arises when in a deterministic specification some of the
signals are hidden (i.e. the respective transitions are labelled with the emqutywyas illustrated
in Fig. 2. In fact, hiding of signals is an essential part of the decompositgarithm of [VWO02,
VKO06], which we will improve in the present paper.

To the best of our knowledge, no satisfactory formal semantics of eterdinistic STGs and in
particular for dummy transitiodshas been given so far (we will show below that the languag®is
satisfactory semantics in the non-deterministic case). In this paper wesgr¢gqad justify) a formal se-
mantics of non-deterministic STGs. For this, we introduce the concenitptit-determinacywhich is a
relaxation of determinism, and argue that it is reasonable and useful ipgbd-sndependent context; cf.
for example [Mil89] for the concept of determinacy. In particular, it iswhaohat for output-determinate
STGs the languags a sufficient semantigsee Section 3), and this also holds in the case of distributed
STGs (see Section 4). We also prove that an STG cannot be implementeskeed-independent circuit
if it is not output-determinate (see Section 6). A large part of the paper@eito an important appli-
cation of the developed theory of output-determinacy: we will generalisddbemposition algorithm
of [VW02, VKO06] and prove its correctness with our theory.

We will now discuss how decomposition fits into the design flow for synthesiagygmchronous
circuits from STGs.

PETRIFY [CKK 797, CKK*02] is one of the commonly used tools for synthesis of asynchronous
circuits from STGs. For synthesis, it employs the state space of the S@Gpauffers from the combi-
natorialstate space explosigmroblem. That is, even a relatively small STG may (and often does) yield
a very large state space. This puts practical bounds on the size of ciiatitsan be synthesised using
such techniques, which are often restrictive, especially if the specifidatimt constructed manually by
a designer but rather generated automatically from high-level hardvesiiptions. (For example, de-
signing a circuit with more than 20-30 signals witBTRIFY is often impossible.) Hence, this approach
does not scale.

2In practical STGs, the designers intuitively avoid using dummy transitios#uations where their semantics would be am-
biguous. However, such situations do exist, in particular when firing andutransition can disable other transitions.



4 V. Khomenko, M. Schaefer and W. Vogler / Output-Determinacy anttAsynous Circuit Synthesis

To cope with the state space explosion problem, Chu suggested a nondistiznmiethod for de-
composing an STG into several smaller ones [Chu87], see also [KKTH8].idea is that all compo-
nents together can be synthesised faster than the original STG while tespmnding circuits perform
together in the same way as the circuit directly synthesised from the sptaifichere are strong re-
strictions on the structure and labelling of STGs in [Chu87]; the improvedrdposition algorithm of
Vogler, Wollowski and Kangsah [VW02, VKO06] works for arbitrarytdeministic specifications; here,
we generalise this to output-determinate specifications.

Based on our theory, we develop a more efficient variant of the decsitiggoalgorithm. In the de-
composition algorithm, each component is obtained from the original STG bygrédme of the signals
in it, and then removing the corresponding transitions by applying so-cadthattion operations; the
most important of these transformations is the contractiok-labelled transitions (cf. Definition 2.1).
The success of this algorithm depends on the abiligetmurely(i.e. in a behaviour-preserving way) con-
tract all such transitions. If this is not possible, the algorithm of [VKO&] tudbacktrackand re-introduce
some of the signals into the component, even if they are not really neededi@mentation. In our
new version of the algorithm, one can leave such non-contracted hidaesitiions in the component
and proceed with synthesising a component with fewer signals, which ptamed in a shorter time.
While previously the components were deterministic and correct by cotistruour components can be
non-deterministic; to guarantee correctness, they have to be checlaagat-determinacy in the end.
The correctness proof for our version is essentially language-pasddnight be easier to grasp than
the bisimulation-based proofs in [VWO02, VKO06]. Furthermore, it is easmsy to prove the validity of
the STG-transformations (like transition contraction) forming the heart ofiélsemposition algorithm;
it should now also be easier to extend the set of valid transformations.

An alternative way to cope with the state space explosion problem is Byn&ex-directedranslation
of the specification to a circuit, thus avoiding to build the state space. Thisastesly the idea behind
BALsA [EB02] and RNGRAM [Ber93]. This technique, although computationally efficient, often yields
circuits with large area and performance overheads compared withreyraels counterparts. This is
because the resulting circuits are highly over-encoded, i.e. they containumaecessary state-holding
elements.

For asynchronous circuits to be competitive, one has somehow to combingvirgages of logic
synthesis (high quality of circuits) and syntax-directed translation (gteesof a solution, efficiency)
while compensating for their disadvantages. A natural way of doing this-synthesisi.e. one ap-
plies logic synthesis to the control path extracted fromaa 8\ specification. This control path can be
partitioned into smaller clusters which can be handled by logic synthesis, aradutters on which it
fails (because of either inability to find a solution in the given gate library oeegling memory or time
constraints) are implemented using the syntax-directed translation. The ixjtiaiments conducted
in [CCO06] showed that this combined approach can halve the area dawatedtrol flow and improve
its latency, compared with the traditional syntax-directed translation, as sothg &ize of clusters which
can be confidently handled by logic synthesis is sufficiently large.

The design flow advocated in [CCO06] is as follows. Given a (potentiallyelaspecification STG,
the encoding conflicts are resolved using an integer linear programmifg téchnique to approxi-
mate the state space of an STG. Then the resulting STG (free from enaalifigts) is decomposed
into smaller components in such a way that they are also free from encoualiflicts, as described
in [CCO3]. (Typically, each component is responsible for produciniggle signal.) Then these compo-
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nents are synthesised one-by-one usiagmrFy. This approach can handle much larger specifications
than FETRIFY alone, but its scalability is still limited since ILP is an NP-complete problem.

With our decomposition algorithm, we follow a more scalable approach, whichttiavoid per-
forming expensive operations (such as resolving encoding conflictd)eooriginal specification. Ob-
serve that our check for output-determinacy is also computationally hardk, is performed on small
components; in contrast, in [CC06] the NP-complete ILP-problems aredstivehe full specification.
The resulting components in our approach, unlike those in the techniqaébgesabove, are generally
not free from encoding conflicts. If a component has an encodinfiictpiit can happen due to one of
the following two reasons: (i) this conflict was present already in the aid@dTG; or (ii) this conflict
was introduced because some of the signals preventing it in the originah&T@t present in the com-
ponent. The technique described in [KS07] allows one to check whicteséttwo reasons applies, and
in case (ii) to find signals which need to be added to the component to psaxenencoding conflicts.
Finally, the remaining encoding conflicts are resolved in each componehtheyare synthesised. Our
decomposition algorithm and all its variants are implemented in the taslI))Sch07].

The paper is organised as follows: in the next section we introduce tieedmsepts of Petri nets
and STGs, including the reduction operations from [VKO06]. In Sectioth8,new notion of output-
determinacy is introduced and justified by showing that for output-determBits (and only for
them) an implementation relation can purely be based on the language; we algseahe complex-
ity of checking output-determinacy. In the following section, we give araguas result for the case
where the implementation is a parallel composition. Furthermore, we presenéwhgariant of the
STG decomposition algorithm together with a list of semantics-preservingdraregions and prove its
correctness. We then give some first experimental results in Sectiod §eapralise our theory to STGs
with internal signals in Section 6.

2. Basic Definitions

This section provides the basic notions for Petri nets and STGs, for a mataided explanation cf.
e.g. [CKK02].

2.1. Petri Nets and STGs

A Petri netis a 4-tupleN = (P,T,W, My) whereP is a finite set ofplacesand is a finite set of
transitionswith PNT =0, W : Px TUT x P — Ny is theweight functionand My is theinitial
marking where amarkingis a multiset of places, i.e. a functidh — N (also written asNZ") which
assigns a number tbkendo each place. A Petri net can be considered as a bipartite graph withteeigh
arcs between places and transitions. If necessary, we Ryitetc. for the components df or P’ (P;)
etc. for the netV’ (1V;) etc. Analogous conventions apply later on.

Thepresetof a place or transition is denoted a%z and defined byz = {y € PUT | W (y,z) > 0},
the postsef z is denoted as*® and defined by:* = {y € PUT | W(x,y) > 0}. These notions are
extended to sets as usual. We say that there &@fmom eachy € *z to x.

A transitiont is enabled under a marking M Vp € *t : M(p) > W (p,t), which is denoted by
M][t). An enabled transition canfire or occuryielding a new marking\/’, written asM [t) M', where
M'(p) = M(p)—W(p,t)+W(t,p), forallp € P. Atransition sequence= t; ..., is enabled under
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Figure 3. An STG modelling a simplified VME bus controllerf(Jeand its state graph with a CSC conflict
between the underlined states (right). The signal orddrérbinary encodings iglsr, Idtack, dtack, Ids,.d

a marking M (yielding M’) if M{t1) Mi[ta) ... My_1[tn)M, = M’', and we writeM [v), M [v) M’
resp.;v is calledfiring sequenceéf My[v). The empty transition sequengeis enabled under every
marking. M is calledreachableif a transition sequencewith My [v) M exists.

N is calledboundedif, for every reachable marking/ and every place, M (p) < k for some
constantt € N; if k = 1, N is calledsafe N is bounded if and only if the séf\/y) of reachable
markings is finite. In this paper, we are mostly concerned with boundedreétrand STGs.

An STGis a tupleN = (P, T,W, My, In, Out,l) where(P,T, W, My) is a Petri net andn and
Out are disjoint sets ofnput and output signals For Sig = In U Out being the set of all signals,
l:T — Sig x {+,—} U {\} is thelabelling function. Sig x {+, —} or shortSig* is the set okignal
edge9r signal transitionsits elements are denoted &5, s~ resp. instead ofs, +), (s, —) resp. A plus
sign denotes that a signal value changes flogical low (written as 0) tdogical high (written as 1),
and a minus sign denotes the opposite direction. We wité it is not important or unknown which
direction takes place; if such a term appears more than once in the same,cbafevays denotes the
same direction. To keep the notation short, input/output signal edges ticaljes input/output edges.
Usually, the letters close to the beginning of the alphakét ¢, . . .) denote input signals and those close
to the end of the alphabet (y, z) denote output signals.

An STG may initially contain transitions labelled wityy calleddummytransitions, which do not
correspond to any signal chanddiding a signals means to change the label of all transitions labelled
with s* to \, andunhidingmeans to change the labels back to the initial values.

An example of an STG is shown in Fig. 3(left) (cf. [CKKZ2]). Places are drawn as circles containing
a number of tokens corresponding to their marking. Unmarked places waighonly one transition in
their presets and postsets are not drawn if the corresponding aeshigaweight 1; they are implicitly
given by an arc between these two transitions. Transitions are dravattasgles together with their
labelling (input transitions with a thick border), and the weight function isvdras directed arcsy
wheneveiV (z,y) # 0 (and labelled withV (x, y) if W (z,y) > 1).
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We lift the notion of enabledness to transition labels: we wiitg(¢))) M’ if M[t)M’. This is ex-
tended to sequences as usual — deletitgbels automatically sinckis the empty word; i.eM[sT)) M’
means that a sequence of transitions fires, where one of them is laigeNelile the others (if any) are
\-labelled. A sequence € (Sig™)* is called atrace of a markingM if M[v)), and atrace of N if
M = My. Thelanguage ofN is the set of all traces aV; it is denoted byL(N). An STG is called
consistentf for each signak the edges™ ands™ alternate in all traces, always beginning with the same
signal edge. Only from consistent STGs a circuit can be synthesised.

An STG has alynamic conflictf there are different transitionts andt, such that for some reachable
markingM: M[t;) andM [t2), but3p € P : M(p) < W(p,t1) + W(p, t2). A dynamic conflictimplies
astructural conflicti.e. *t; N *t2 # (0. The conflict is called aauto-conflictif I(¢1) = I(t2) # A.

Simulations are a well-known important device for proving language inclusicquivalence. A
simulation from/V; to Ns is a relationS between markings aV; and Ny such that My, , My,) € S
and for all(M;, My) € S and M; [t) M] there is someé\f}, with Ms[l1(t))) M, and (M, M) € S. If
such a simulation exists, théw, can go on simulating all signals of;, forever.

Often, nets are considered to have the same behaviour if they are l@mgmagalent. Another, more
detailed behaviour equivalence is bisimulation. A relatibis abisimulationbetweenN; and N, if it
is a simulation fromV; to Ny andB~! is a simulation fromV, to N;. If such a bisimulation exists, we
call the STGdisimilar; intuitively, the STGs can work side by side such that in each stage ead@h ST
can simulate the signals of the other.

Thereachability graphRGy of an STGN is an arc-labelled directed graph on the reachable mark-
ings with My as root; there is an arc frod¥ to M’ labelledi(t) wheneverM [t) M'. RG y can be seen
as a finite automaton (where all states are accepting)Land is the language of this automaton. For
an example consider Fig. 3(right) is deterministidf its reachability graph is a deterministic automa-
ton: it contains no\-labelled transitions and there are no dynamic auto-conflicts, i.e. for eachable
marking M and each signal edgé there is at most ong/’ with M [sT))M’. Note that a deterministic
STG can have choices between different outputs. For example, an S@&limg a standard arbiter is
deterministic; see the discussionaftput-persistencst the end of this section. For deterministic STGs,
language equivalence and bisimulation coincide.

If RGy is not deterministic, one can turn it (using well-known automata-theoretic melthoid
a language equivalent deterministic automaton with accepting states only;ticulzay the resulting
automaton will have na-arcs. (Note that this version of a deterministic automaton is in general not
complete.) We call this transformatialeterminisatiorand denote the resulting deterministic finite au-
tomaton byDA(N). Observe that automata with accepting states only can be regarded agv8iGs
the states as places, the initial state being the only marked place, etc.); akknedinitions for STGs
also apply to automata.

In the following definition ofparallel compositiorj|, we will have to consider the distinction between
input and output signals. The idea of parallel composition is that the comggseins run in parallel
and synchronise on common signals — corresponding to circuits that mmeated on the wires corre-
sponding to the signals. Since a system controls its outputs, we cannot adigwah to be an output
of more than one component; input signals, on the other hand, can kexlsh@an output signal of a
component may be an input of other components, and in any case it is anh @iudpe composition.

The parallel composition of STGY; and N is defined ifOut; N Outy = . If we drop this
requirement, the definition gives tisgnchronous producd; x Ns, which will be technically useful.
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Figure 4. Parallel composition example. In the net fragnoarthe left hand side, signalis an output, and in the
fragment in the middle it is an input. Hence, in their pafdatlemposition (right) it is an output. In this example,
there iscomputation interferencehe left component activates arf but the middle one is not ready to receive it.
This problem is not visible in the parallel composition; gefinition 4.1.

The place set of the composition is the disjoint union of the place sets of theooemis; therefore, we
can consider markings of the composition (regarded as multisets) as thetdisjimin of markings of
the components, and we will also write such a markidg_JM, of the composition ag)M;, Ms). To
define the transitions, led = (In; U Outy) N (Ing U Outy) be the set of common signals. If e.g.
is an output ofN; and an input ofV,, then an occurrence of an edgié in N is ‘seen’ by N, i.e. it
must be accompanied by an occurrence®in N,. Since we do not know a priori whicki*-labelled
transition of N, will occur together with some=®-labelled transition ofV;, we have to allow for each
possible pairing. Thus, thearallel compositionN' = Nj || N, is obtained from the disjoint union of
N1 and N> by fusing eachsT-labelled transitiort; of N; with eachs™-labelled transitiort, from N,

if s € A. Such transitions are pairs and the firilg1, M2)[(t1, t2)) (M7, M;) of N corresponds to the
firings M;[t;) M] in N;, @ = 1,2; for an example of a parallel composition, see Fig. 4. More generally,
we have(M;, My)[w)) (M, M) iff M;[w|y,)) M/ fori € {1,2}, wherew|y, denotes the projection of
the tracew onto the signals of the ST@;. Hence, all reachable markingsdfhave the form(M, M,),
wherel; is a reachable marking @f;, : = 1, 2.

A composition can also be ill-defined due to what e.g. Ebergen [Ebe92]catiputation interfer-
ence(see Fig. 4); this is a semantic problem, and we will not consider it herdateutin the definition
of correctness.

It is easy to see thaV is deterministic ifN; and N, are. However, as illustrated in Fig. &, might
have structural auto-conflicts even if none of flighas them.

Obviously, we can define the parallel composition of a finite family (or colleXtioh);c; of STGs
as|l;er C;, provided that no signal is an output signal of more than one ofthéVe will also denote
the markings of such a composition by/1, ..., M,,) if M; is a marking ofC; fori € I = {1,...,n}.
As above (M, My, ..., M,)[w)) (M, M, ..., M) iff M;[w|c,))M/forallie {1,...,n}.
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We now introduce transition contraction (see e.g. [And83] for an eaftyaace), which is the most
importantreduction operatiorof our decomposition procedure. We essentially repeat from [VKO06],
where further discussions can be found. Intuitively, a transition cotidraremoves the respective tran-
sition from the net and combines each place of the preset with each pldoe pbstset to ‘simulate’
the firing of the deleted transition. In this definitiohg P U T is a pseudo element used for notational
convenience to have only pairs of places. We assunge, ¢1) = W (t;,*) = My (%) = 0.

Definition 2.1. (Transition Contraction)
Let N be an STG and € T with [(t) = A\, *tNt* = 0 andW (p,t), W(t,p) < 1forallp € P. We
define thet-contractionN of N by

P = {(px)|peP-(tut)}u {(pp)|pec’tp et}
T = T—{1)
W((p,p'),t1) = W(p,t1) +W(p',t1)
W(ti, (p,p')) = Wl(t,p) +W(t1,p)
=l
My ((p,p")) = Mn(p)+ Mn ()
In=1In Out = Out

We say that the marking® of N andM of N satisfy themarking equalityif for all (p,p’) € P

M((p,p")) = M(p) + M(p").

For two different transitions;, ¢ with ¢; # t # t9, we call the unordered pa{tt;,t2} anew conflict
pair whenever"t N *t; # () andt® N *ty # 0 in N (or vice versa); ifl(t1) = I(t2) # A, we speak of a
new structural auto-conflict

A transition contraction is calledecureif either (°¢)* C {t} (type-1 securg or *(¢*) = {¢} and
My (p) = 0 for somep € t* (type-2 securp O

Intuitively, for a type-1 secure contraction, there is no conflict in thesegireft, and for a type-2
secure contraction, essentially there is no merging in the postseNeote that, in generaly might fail
to be consistent, even i is; but secure contractions preserve consistency [VK06].

Fig. 5 (top) shows a part of a net and the result of contracting\th@nsition. In many cases,
the preset or the postset of the contracted transition has only one elemérihea the result of the
contraction looks much easier as e.g. in Fig. 5 (bottom). Herehth@nd thect-labelled transition
form a new conflict pair; note that this is also true, if they already had a conpiaze (not drawn) in
their presets iV — they now have a new such place.

The following theorem of [VKO06] and the succeeding corollary of its sgcpart show in which
sense secure transition contractions are behaviour-preservinge Mémilts are used in Section 4.
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Figure 5. Two examples of a transition contraction.
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Theorem 2.2. Let N be a secure contraction &f.
1. If the contraction is of type 1, theN and N are bisimilar.

2. If the contraction is of type 2, the$t = {(M, M) | M andM satisfy the marking equalilyis a
simulation fromNN to N, and there is a simulatio® C S~! from N to .

3. N andN are language equivalent. O

Corollary 2.3. If N is a type-2 secure contraction df, then the simulatio’ in Theorem 2.2 is geady
simulationfrom N to N, i.e. a simulation wheréM, M) € S’ implies M [sT)) if and only if M[s*)),
for all signalss. O

We conclude this section by introducing redundant transitions and pldtegleletion of such a
transition, place resp., (including the incident arcs) is another transfiomthat is used in our decom-
position algorithm.

A transitiont is redundantf either it is a\-transition withW (p, t) = W (¢, p) for each place (i.e. t
is aloop-onlytransition), or there is another transitiBiwith the same label such thBf(p, t) = W (p, ')
andW (t,p) = W (t', p) for each place (i.e. t is aduplicatetransition).

A placep is implicit if it can be deleted from the net without changing the set of firing sesqsenc
However, detecting implicit placesRRSRACE-complete already for safe nets, and during decomposition
only redundant placefBer87] are deleted. Redundant places are a subset of implicit am#hey are
defined on the structure of the net; there are efficient linear programnthgitgies to find them. The
details of the definition are not relevant for this paper, see e.g. [VKO06].

Proposition 2.4. If N’ is obtained from an ST®' by deleting a redundant transition or place, thén
and N’ are bisimilar. &

2.2. STGs and Asynchronous Circuits

STGs are widely used for specifying the behaviouasynchronous circuitsSuch a circuit has input
signals, which are controlled by the environment, and output signals,em@bses are changed by the
circuit. The STG describes which output signals should be performedhinth input signals the envi-
ronment is allowed to produce; cf. Subsection 3.1. We now explain the impadanept ofcomplete
state coding (CSC)

For an STGN, astate vectoris a functionsv : Sig — {0,1} where 0" means logical low and
‘1" logical high. A state assignmerdssigns a state vecter,,; to each markingl/ of RGy. A state
assignment must satisfy for every signale Sig and every pair of markingd/, M’ € [My) the
following properties:

[z+))M" impliessvys (z) = 0, svppr(z) = 1
[z—))M" impliessvys(z) = 1, svpp(x) =0
[y=)) M’ for y # x impliessvy (x) = svpp ()
[(A)) M impliessvy = svpy

iiii
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If such an assignment exists, it is uniquely defined by these propered the reachability graph
and the underlying STG areonsistent From aninconsistentSTG, one cannot synthesise a circuit.
Fig. 3(right) shows the reachability graph of the STG in Fig. 3(left); eveaghable marking is annotated
with its state vector.

If there is a state assignmei,hasComplete State Coding (CSiCany two reachable markingt/;
and M, with the same state vector (i.evy;, = sva,) enable the same output signals, il (%)) iff
Mo [2z*)) for each output signat. Otherwise N has aCSC conflictcf. e.g. Fig. 3(right), and no circuit
can be synthesised directly. In such a case, one tries to achieve it bgéngdn ofinternal signalsi.e.
outputs which are considered to be unknown to the environment, withongitigethe external behaviour
of the STG; cf. Section 6 for a detailed discussion of internal signals.

Another important properties of STGs and asynchronous circuits whaisticbe fulfilled to permit
synthesis iputput-persistencyAn STG is output-persistent if every activated output edge will eventually
happen, i.e. enabled outputs cannot be disabled. However, inputs nragdmaflict with other inputs.
It should be noted that some circuits, like arbiters, can handle a choiced®tautputs in a speed-
independent way with the help of analog circuitry allowing to resolve the agrigiata-stability. In
practice, to synthesise such circuits, the arbitration is ‘factored out’ tawisoement, so that the choice
between outputs is transformed into the choice between inputs, making thel#3@-persistent; then
a standard arbiter is used in the final implementation.

3. Output-Determinacy

In this section, we define in a natural way when a deterministic STG can bedeshas a correct im-
plementation of a specification ST&; we only consider deterministic implementations here, since the
final implementation ofV will be a circuit, which is deterministic by nature. Considering the case that
the specification may be non-deterministic, we introduce the concepttpéit-determinacgywhich is a
relaxation of determinism. It turns out that output-determinate STGs ardyeitae STGs which have
correct implementations according to our notion. Hence, if an STG is nhoutdgierminate, it is ill-
formed and cannot be correctly implemented by a circuit. This shows thktrtgeage is not a satisfac-
tory semantics of non-deterministic STi@general; in particular, if an STG %ot output-determinate,
then synthesising its determinised state graph will either fail or result in arriecocircuit.

For the class of output-determinate STGs we show that their language issquadel semantics,
and reformulate the notion of correct implementation purely in terms of the lgegughis notion is a
pre-congruence for parallel composition, and this plays an importanasgart of the invariant in the
proof of correctness of our STG decomposition algorithm describedatidbe4, which we view as an
important application of the developed theory. Moreover, we introducs afssemantics-preserving
STG transformations, which are, in particular, used in our decompositionithlgn. This set can easily
be extended since the definition of semantics-preserving is simple. To illugtigtén Section 4 we
introduce new transformations, which were not used in decompositioritalgsrso far.

Finally, we analyse the computational complexity of checking whether a ¢d@ is output-
determinate for several classes of STGs, and describe a practicalfvednecking it in the case of a
divergence-free safe or bounded STG.

3At least for every signat € Sig which actually occurs, i.eM[s*)) for some reachable marking'.
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3.1. Correct implementations

An STG N specifies the behaviour of a system in the sense that the system musepidbaitt onlythe
specified outputs and that it must allavleastthe specified inputs. As a consequence, the system must
be able to perform at least all traces/éf In fact, N also describes assumptions about the environment
the system will interact with; namely, the environment will only produce thetggpecified byN.
A correct implementation ofV may allow additional input events (and traces), but these events and
subsequent behaviour will never occur in the envisaged environnmeotthér words, when the system is
running in a proper environment, only tracesfcan occur.

The implementation may actually have fewer input signals tNakeeping only those that are rele-
vant for producing the required outputs. In this case, the environmgnpraide irrelevant inputs, but
the implementation simply ignores them — and in this sense, they are always allewedh the STG
in Fig. 2, inputsa andb are irrelevant for producing and can be ignored).

The following definition assumes a deterministic implementation (as it is the caseuit diesign),
but the specification can be non-deterministic. The projection of a tra@eN onto the signals of’,
obtained by deleting all signal edges where the signal belonfisxto, Inc, is denoted byv| ¢

Definition 3.1. (Correct Implementation)
A deterministic STGC' is acorrect implementationf an STGN if Inc C Iny, Outc = Outy, and
for all w and allM such thatV y [w)) M the following hold:

(C1) w|¢isatrace of’, i.e. Mc[w|c))M' for some markingV/’ of C' (note thatM/’ is unique ag”' is
deterministic);

(C2) Ifa € Iny andMa*)), then eithetM'[a*)) ora & Inc;
(C3) If z € Outy, thenM [zF)) iff M'[z7F)). &

This definition is a formalisation of the considerations above: the implementatidromable to perform
all traces of the specification, maybe dropping some irrelevant inputlsi¢@a); all the inputs allowed
by the specification must be allowed (or ignored) by the implementation (C@)thenimplementation
must produce exactly the specified outputs (C3). In particular, eveeyrdmistic STGN is a correct
implementation of itself.

3.2. The Notion of Output-Determinacy

A non-deterministic specification can perform the same trace in two differays$, reaching different
statesiM; and Ms. In the speed-independent context the only information available to thétdsthe
execution history, i.e. the trace perfornfednd so an implementation cannot know whether its current
state corresponds tbf; or M>. Hence, a deterministic implementation must behave consistently with
the specificatiomo matter in which of these markings it is

Our definition of correctness requires that the implementation must prexaflythe outputs en-
abled by, andexactlythe outputs enabled b¥/,. This is only possible if\f; and M> enable the
same outputs. In contrast, the implementation must afibleastthe inputs enabled undér; andat

“In a non-speed-independent context some additional informatioh asctiming of events may help to resolve non-
determinism.
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o @—»a"'—»

Figure 6. Non-output-persistency due to determinisatiofn output-persistent but not output-determinate
STG (left) and the non-output-persistent STG (due to thacehbetween the outputs and y) obtained from

it by determinisation (right). Note that determinisati@nalso result in a choice between an input and an output
(this would be the case if were an input).

at P T @—>a+—>;p+

Figure 7. Incorrect determinisation: the STG on the leftas sutput-determinate; the result of determinisation
is shown on the right. The latter STG, though implementaislerot a correct implementation of the original
specification: it can cause a failure in the environment lmgdpcingz when the environment does not expect it.

leastthe inputs enabled unda@is; this is very well possible even if these sets of inputs differ —i.e. the
implementation may allow the union of these sets or any of its supersets. Thivatiseleads to our
central notion of output-determinacy.

Definition 3.2. (Output-Determinacy)
An STG N s calledoutput-determinaté My [w))M; and My [w))Ms implies for everyz € Outy
that My [z%)) iff May[z™)). &

For example, the non-deterministic STG in Fig. 2(right) is output-determinaterlla deterministic
STG is always output-determinate; note also that — in contrast to a determiniglic-San output-
determinate STG may contaitransitions.

3.3. Semantics of Non-Deterministic Specifications

Now we demonstrate that the notion of output-determinacy is useful forinigfinsemantics of non-de-
terministic specifications (in particular, allowingtransitions), and we also justify this semantics.

First of all, the n&ve approach consisting in determinisation of a non-deterministic specification u
ing the usual procedure for finite automata and then proceeding with thieesisis not always correct.
In the context of STGs and circuit synthesis, the result of determinisasiomanifest some problems,
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e.g. non-output-persistency, as illustrated in Fig. 6; Fig. 7 illustrates a muoh daogerous scenario,
where the determinised STG contains no apparent problems but the resinltingis incorrect accord-
ing to Definition 3.1. In both cases, it is wiser to inform the designer of aor ¢éhan to determinise
and synthesise such a specification. Below we show that determinisatidre cgafe only for output-
determinate specifications.

Semantic Rule 1.If a specification of a speed-independent system is not output-deter-
minate, it cannot be implemented deterministically and thus is ill-formed.

This rule can be justified by the following result.

Proposition 3.3. Let C' be a correct implementation &f; in particular,C is deterministic. TherV is
output-determinate. O

Proof:

For the sake of contradiction, suppose thahas a tracev and two reachable markings/; and Ms,
such that for some € Outy, My[w))M;[zF)), and My[w)) M, and—Ms[z*t)). Then, by (C1) of
Definition 3.1,w|¢ is a trace of”'; moreover, sinc€' is deterministic, it has a unique reachable marking
M’ such thatMc[w|c)) M’. Now, by (C3) of Definition 3.1)[z*)) due toM;[z*)), and, on the other
hand,~M'[z*)) due to—~M,[xF)), a contradiction. O

Observe also that an STG always has CSC conflicts if it is not outputrdieteie, since, according
to Definition 3.2, any violation of output-determinacy implies the presence of tatesswhich can be
reached by the same trace (and thus have the same encoding) and éfexelet dets of outputs. In
Section 6 it is shown that such a CSC conflidrieducible [ KKTV94], i.e. it cannot be resolved by the
insertion ofinternal signalsinto the STG (as performed e.g. bgFRIFY or MPSAT) in such a way that
its ‘external’ behaviour does not change. The STG resulting from andhsertion will always have a
violation of output-determinacy (and thus CSC conflicts) again.

On the other hand, output-determinate specifications can safely be detednenisl so there is no
reason to distinguish between the specification itself and its determinised form:

Semantic Rule 2.The semantics of an output-determinate specification of a speed-
independent system is its (prefix-closed) language.

This rule can be justified by the following result.

Proposition 3.4. Let N be an output-determinate STG a@idbe the deterministic automatdnA(N)
obtained by determinisation of the reachability grapiVofThenC' is a correct implementation @¥. <&

Proof:
The determinisation does not change the language; hédigéw)) M [sT)) (w € (Sig]j\:,)*, s € Sign)
implies directlyMc[w)) M'[s*)). This proves (C1), (C2) and thes” part of (C3).

To show the %=’ part of (C3), assumé/’[z%)) (x € Outy). This impliesMy[w)) M"[zF)) for
some markingM”, as otherwise the language is not preserved. SiMde output-determinate, also
M[zF)). O
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Figure 8. Determinisation: an output-determinate SIVGwith a deadlock (left) and the deadlock-free STG
obtained fromN by determinisation (right). The latter STG is a correct iempéntation of/V; intuitively, the
execution ofz~ is correct, since it only occurs when the environment sigdalith o~ that the system is in the
‘lower’ branch of N. The circuit[z] = « implements either of these two STGs.

The proposed semantics has interesting consequences, in particylacifacation with deadlocks
can have a deadlock-free implementation, as illustrated in Fig. 8. Hendeaarltanguage-preserving
transformations of output-determinate specifications are allowed, as log assulting STG is still
output-determinate. That ihere is no need to preserve stronger equivalences such as bisimulation.
fact, in Section 4.2 we relax these requirements even further.

In view of Semantic Rule 2, one would expect that the notion of correct impletien given in Defi-
nition 3.1 can be reformulatgurely in terms of the languagdgthe specification and the implementation
are known to be output-determinate. In fact, we generalise the definition o allmn-deterministic
implementation, as long as it is output-determinate.

Definition 3.5. (Trace-Correct Implementation)
An output-determinate ST@' is atrace-correct implementatioof an output-determinate STG if
Inc C Iny, Oute = Outy, and for every trace of N the following hold:

(TC1) w| ¢ is atrace of’;
(TC2) If w|ca™ is atrace ofC for somer € Outc, thenwz™ is a trace ofV. &

This definition can be viewed asdgnotationalnotion of correctness, as opposed to dperational
one given in Definition 3.1. However, it should be emphasised that this nexiplicitly requires the
specification to be output-determinate (i.e. this purely trace-based viewhteuoadistinguish whether
a specification is output-determinate or not). The result below shows thatdtit is equivalent to
Definition 3.1 if the implementation is deterministic.

Proposition 3.6. (Justification of the notion of trace-correct implenentation)

Let N be an STG and’ be a deterministic STG such thats C Iny andOutc = Outy. ThenC is a
correct implementation oW iff it is a trace-correct implementation @f, andV is output-determinate
in this case. O

We postpone the proof of this result until the next section, where it is flatea and proven for the more
general case of a distributed implementatior= ||;c;C;. (Note thatC' in the above result can be seen
as being a distributed implementation comprised of a single component.)
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3.4. Checking Output-Determinacy

In this section, we analyse the complexity of checking output-determinaef@ral classes of STGs
and propose a practical test for the cases of safe or boundedelive-free STGs.

The coverability problem is the problem of deciding whether a given Petri net or an SEzha
reachable markind/ coveringa given markingM’ (i.e. M > M’). The complementary problem
will be called theuncoverabilityproblem. A special case of the (un)coverability problem is gime
gle-place (un)coverabilitywhere|M’| = 1. The computational complexity of this problem for various
Petri net classes is well-understood [Esp98], namelyRIRACE-complete for safe and bounded, and
EXPSRACE-complete for unbounded nets.

We now show that the (un)coverability problem on a Petri net can becegldio the (un)coverability
problem on a consistent output-persistent and output-determinate STGindtamies, which belongs
to the same class (safe/bounded/unbounded) as the original Petri eahaiimidea of the reduction is
to split each transition of the Petri net into four STG transitions!, z;", a;” andz; , whereq, is a new
input andz; is a new output, as illustrated below:

FORINE - WA AR O

ik — af |z o

& O & O
One can easily show that the size of the resulting STG is linear in the size afgh@abPetri net, and that
this STG contains no dummies, is output-determinate (in fact, deterministic), queépsistent (since no
two different output transitions have overlapping presets) and cons{ste place in the feedback with
a token on it prevents self-concurrent execution of transitions; notdhisaarc is not necessary if the
original Petri net is safe).Moreover, all the places of the original net are also places of this SA@, a
they are not in the preset of an output transition; any markihgf the original Petri net is (un)coverable
iff M is (un)coverable in the STG, i.e. the (un)coverability problem on a Petiismeducible to the
corresponding problem on this STG.

We proceed by showing that the single-place uncoverability problemanauSTG can be reduced
to checking output-determinacy (of a modified STG); this reduction formsdkes lof our lower com-
plexity bounds analysis. Given an STG with a pladéat is not in the preset of an output transition, we
attach the following net fragment g wherea is a new input and: is a new output:

q at

p at PPzt

Note that the obtained STG contains no dummies and is still consistent (sincevitiateyg pre-
vents the new transitions from firing more than once), output-persistenbelongs to the same class
(safe/bounded/unbounded) as the original Petri net. Moreover, T@si$ output-determinate iff is
uncoverable. In effect, we have proved the following result.

5In fact, this STG is implementable by the circlit] = a, for all ¢.
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/* execute a sequeneeof transitions without remembering it, */
/* non-deterministically choosing each of its steps */
choose o such that My y[o) (M, Ms)

/* non-deterministically choose an output transition */
if Vt € Ty« n : I(t) ¢ Outthen loop forever
choose t € Ty« such that [(t) € Out

/* check enabledness for violation of non-output-determinacy */
if =M [t) then loop forever
if = M5[l(t))) then accept else loop forever

Figure 9. Algorithm checking for violation of output-deteinacy.

Proposition 3.7. Let N be a safe/bounded/unbounded Petri net;abd one of its places. Then one can
build a, respectively, safe/bounded/unbounded, consistent angtqegsistent STGV which contains
no dummy transitions and whose size is linear in the siz& pfuch thatV’ is output-determinate iff

is uncoverable inV. O

Corollary 3.8. The problem of checking output-determinacyASRACE-hard for safe and for bounded
STGs andXPSRACE-hard for unbounded STGs. Moreover, these complexity bounds reheagame
even if the STG contains ho dummy transitions and is known to be consisteaugnd-persistent. &

Proof:
Follows from Proposition 3.7, the corresponding complexity results for ithglesplace coverability
problem in [Esp98] and the fact that the space classes are closedemplernentation. O

We complete our analysis by giving tight upper bounds for the probleinaxfiang output-determinacy
for the cases of safe and bounded STGs. The basis for this is thestemmehistic algorithm in Fig. 9
for checking whether a net is not output-determinate.

Given an STGN, the algorithm builds the synchronous proddctx N and analyses its reachable
markings. One can observe that in order to show M not output-determinate it is enough to demon-
strate the existence of a reachable marking, M) of N x N such thatM;[z*)) A ~Ms[z*)), for
some output. In fact, this condition can be simplified, without loss of generality, by réptag/; [z*))
by 3t : Mi[t) Al(t) = z*. Using this observation, one can easily show the correctness of this algo-
rithm. Indeed, if it acceptd’ thenV is not output-determinate; moreover, every non-output-determinate
STG N can be accepted if the algorithm makes a proper sequence of choipégit{eg the power of
non-determinism).

Note that for safe and bounded STGs, the memory requirement of thistlatlgas only polynomial
in the size of N; in particular, one can decide wheth&f[/(¢))) at the last step of the algorithm by
performing a number of marking coverability tests linear in the sizé&/ ofone for eachi(¢)-labelled
transition), where each test can be decide@#RACE for safe and bounded STGs [Esp98]. Since the
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deterministic and non-deterministic versionsR#RACE coincide and the space classes are closed w.r.t.
complementation, the following holds.

Proposition 3.9.
Output-determinacy can be decided?§RACE for safe and for bounded STGs. O

Combined with Corollary 3.8, this result means that the problem of checkitubdeterminacy is
PSPACE-complete for safe and bounded STGs, and the complexity remains the sam&iT@icon-
tains no dummies and is known to be consistent and output-persistent. Hptievalgorithm above
cannot be used to claim that output-determinacy can be decided RS RACE for unbounded STGs,
even though the propertyMs[l(t))) at the last step of the algorithm can be decide8APSRACE in
this case. The reason is that the amount of memory consumed by the algaithimeaome arbitrarily
large due to the need to keep the current marking/ot N, whose size is unbounded. Hence, in this
paper we leave the question about the upper complexity bound for the@ttaabounded STGs open.
(This case is not very interesting from the practical point of view anyway

Though the above algorithm is adequate for proving the theoretical eppgylexity bounds, it may
be non-trivial to efficiently implement it in practice. Therefore, we pra@pasmuch simpler approach
for the practically important case of a safe or boundigrgence-fre&TG, i.e. an STG which cannot
execute an infinite sequence ptransitions from any of its reachable markirfg&ne can observe that
in such a case the conditiaW; [z*)) A ~M;[zF)) can be simplified further t63¢ : Mi[t) A l(t) =
o)A =3t 2 Ma[t) Al(t) € {xF,)}). The latter can be reduced to a number of coverability tests
(by introducing complementary places) that is polynomial in the siz& pobr checked directly using,
e.g. the unfolding-based theory developed in [Kho03, Mel98].

4. Decomposition into Output-Determinate Components

In this section, we describe how the developed theory of output-deterynoaacbe applied to derive
an algorithm for decomposition of STGs into smaller components. First, wédemnistributed imple-
mentationsi.e. implementations which can be represented as a parallel composition of @Gterive
a correctness condition for such implementations, which is consistent witmtwedeveloped in the
previous section. Then we describe our decomposition algorithm andlfppnave its correctness.

4.1. Correct Decompositions

In this section, implementations consisting of a familgofmponent$C; ), are considered. Recall that
we assume all STGs to be bounded,; this is preserved by all the transfarmdéiscribed in this paper.
For each of the”;, synthesis is performed separately and the resulting circuits are simplgatedrwith
wires for their common signals. Clearly, an output must be produced byomaycomponent. On the
other hand, several components can listen to the same signal, produtiesl dsyvironment or another
component. On the level of STGs, this is captured bypellel compositiorof the (C;);cr. We first
generalise Definition 3.1 to families of components, additionally taking cateraputation interference
as explained below.

8A practical sufficient condition for divergence-freeness can hieioed using T-invariants [Mur89].
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Definition 4.1. (Correct Decomposition)

Let N be an STG and’ = ||;c;C; be a parallel composition of deterministic components. Tli&M;c
is acorrect distributed implementatigior acorrect decompositigrof N, if C' is a correct implementa-
tion of N (cf. Definition 3.1) and the following holds:

(C4) If wis atrace ofV, Mc[w|¢))(M;);er for some marking M;);c; of C, andM;[z*)) for some
j € I andz € Out;, then(M;);er[z*)) (nocomputation interferenge

Here, and whenever we have a collect{@h);c; in the following, Out; stands forOutc; etc. O

Thus, computation interference occurs if some component producegput which is not expected
by the other components. In reality, this output is produced anyway, g&uoli;m malfunction of the sys-
tem. But on the level of STGs, in the parallel composition of the componentsutpat will be disabled
instead, i.e. the problem becomes hidden, as illustrated in Figure 4. Sindeaamposition algorithm
is correct, it ensures (C4), and such unexpected outputs do natindbe components produced by it.

Since computation interference is a semantical notion, we have not catsitdén the definition
of parallel composition, where we only required the syntactic condition teabtltput sets are disjoint.
In fact, it is not possible to treat computation interference in the definitioracdliel composition for
the following subtle reason: (C4) only forbids computation interferencéaites that can really occur
in appropriate environments, i.e. when performing a trac& gmodulo the irrelevant inputs). In fact,
our decomposition algorithm frequently produces components which stiwtation interference in
other reachable markings. In short, (C4) is violated if and only if malfunatiothe physical level can
occur while the components work in an appropriate environment.

Observe that Definition 4.1 is a generalisation of Definition 3.1Cff);c; consists of only one com-
ponentC';, thenC' = C1, no computation interference can occur, and (C4) trivially holds. Funtoee,
in [VW02, VKO06] a correctness definition in a bisimulation style was presefmtedeterministicV and
applied in the context of decomposition; this definition is easily seen to beagoivto Definition 4.1
for generalN.

Analogously to the notion of correct implementation, the notion of correciloligéd implementation
can be reformulated purely in terms of the language, if the specification amtistnibuted implementa-
tion are known to be output-determinate.

Definition 4.2. (Trace-Correct Distributed Implementation)

Let N and(C;);cr be output-determinate STGs. Thet;);c; is atrace-correct distributed implemen-
tation (or trace-correct decompositigrof N, if for C' = ||;c;C; (TC1) and (TC2) of Definition 3.5 hold
and for every tracey of N the following holds:

(TC3) If w| iji is a trace ofC; for somex € Out;, thenw| cx™T is a trace ofC (no computational
interference). <

This definition can be viewed asdgnotationahotion of correctness, as opposed to diperational
one given in Definition 4.1. The result below shows that this notion is ebpnivéo Definition 4.1, if
the implementation is deterministic and the specification is output-determinate. CIedilyition 3.5
is a special case of this definition, and Proposition 3.6 is obtained as alsmesgeof this theorem by
consideringl = {1} andC = C}.
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Note that we require th€’; to be output-determinate, but we do not have to require thi€'ftr get
a sensible trace-based definition. This is also adequate, because wgiiltliessynthesised from the;
(and theseircuits are composed whil€' does not have to be built).

Theorem 4.3. (Justification of the notion of trace-correct distrituted implementation)

Let N be an STG and’ = ||;c;C; be a parallel composition of deterministic STGs such fhat C Iny
andOutc = Outy. Then(C;)er is a correct distributed implementation &f iff it is a trace-correct
distributed implementation a¥, and in this caséV is output-determinate. O

Proof:

N is output-determinate by Proposition 3.3. First we prove that;jf;c; is a correct distributed im-
plementation ofN, then it is also a trace-correct distributed implementatioofWe consider each
requirement of Definition 4.2 in turn, and show that they follow from Definidoh

(TC1) Coincides with (C1). So, let be a trace ofV, i.e. My[w))M for some reachable markiny
of N, andMcw| ¢))(M;)icr for some marking M;);e; of C.

(TC2) Since all the components are deterministic, the markidg ;¢ is uniquely determined by | ¢,
and thus for anyt € Outy: if w|cx™ is a trace o0, then(M;);cr[z*)) andwz™ is a trace of
N by (C3).

(TC3) Suppose now that € Out; andw| C]wi is a trace ofC; for some;j € I. SinceC} is determin-
istic, M; is uniquely determined by | ¢, and thusM;[2*)). Therefore, by (C4)(M;)icr[2*))
andw| cz* is a trace ofC.

Now we show that, it is a trace-correct distributed implementationdf then it is also a correct one.
We consider each requirement in Definition 4.1 in turn, and show that it felfown Definition 4.2.

(C1) Coincides with (TC1). So, lét/y[w))M for a markingM of N, andMc[w|c))(M;)icr-

(C2) Leta € Iny be such thab/[a*)). Sincewa™ is a trace ofN, wa™ | ¢ is a trace ofC by (TC1),
i.e. eithera ¢ Inc or (M;);er[a®)), as(M;);er is uniquely defined by | ¢ due to the determinism
of C.

(C3) = Similar to the case for (C2).

< Suppose M, );cr[xT)). Thenwz* is a trace ofV by (TC2), i.e.My[w))M'[z*)) for some
reachable marking/’ of N, and soM [zT)) due to the output-determinacy of.

(C4) Suppose € Out; andM;[z*)) for somej € I. Thenw| oz is a trace ofC by (TC3). SinceC
is deterministic, the marking\;);c; is uniquely determined, and tha/;);c;[zT)).
0

The next theorem shows that trace-correctness can be ap@ragchically, i.e. given a trace-correct
distributed implementation, any of its components can in turn be replaced with itdraearcorrect
distributed implementation. A similar theorem for the bisimulation style correctnemdbitfary STGs
can be found in [SV05].
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Theorem 4.4. (Hierarchical Trace-Correct Decomposition)
Let (C;)icr be a trace-correct decomposition 8t and for some’ < I let (C;),c; be a trace-correct
distributed implementation af;/, wherel N J = (). Then(C})rex IS a trace-correct decomposition of

N,whereK = (I'\ {i'}) U J. &
Proof:

Clearly, the components”y ) ,.cx are all output-determinate. We defie= ||;c;C;, C’ = ||;e,C; and
C" = ||kex Ck. ProvingInc» C Iny andOuter = Outy is comparatively simple but a bit tedious;

a proof can be found in [SV05]. To simplify the notion, e.g. (TCLHenotes applying (TC1) for the
parallel compositiorC, and instead ofv|c, we will just write w|;. Also, we treat (TC3) before (TC2).
Now letw € L(N).

(TC1) (TC1L) impliesw|c € L(C) and therefore&/i € I : w|; € L(C;). In particular,w|; € L(Cyr).
Then, by (TC1Z"), w|c» € L(C') and thereforé/j € J : w|; € L(C;). Togethervk € K :
wlx € L(Cy), and hencev|c» € L(C").

(TC3) w|pzt € L(Cy) for k € K andx € Outy,. We consider the following two cases.

k ¢ J Then, (TC3C) impliesw|caz™ € L(C), and by (TC20) wz™ € L(N).

k € J Then, (TC3C') implies w|c:z® € L(C'). By (TC2IC"), w|yx* € L(Cy). Applying
(TC3) and (TC2) forC in the same way impliesz™ € L(N). In both casesw|crz® €
L(C") follows with (TC1/LC").

(TC2) w|cna™ € L(C") for x € Outcn. Obviously,z € Outy, for somek € K andw|,z™ € L(Cy).
Then,waz* € L(N) as just shown in case (TC3).
O

Corollary 4.5. The relation ‘trace-correct implementation’ (if.N, N') | N’ is a trace-correct imple-
mentation ofN'}) is a pre-congruence for parallel composition. O

Proof:

Reflexivity is trivial. Transitivity follows from the above theoremiifandJ are singletons. Now pre-
congruence follows when considering that in a decomposition a compsimeptiaced by another single
component. O

We will use this result for the new correctness proof at the end of thigsec

4.2. Valid STG transformations

Due to Semantic Rule 2, any language-preserving STG transformatiorooitjpunt-determinate specifi-
cation is valid, as long as the resulting STG is output-determinate. Actually,eméin 4.4 (fof.J| = 1)
suggests, it is sufficient to preserve trace-correctness. Howieigealso desirable for a transformation
to preserve violation of output-determinacy as well, so that an ill-formed S3&3 dot become well-
formed after its application; that ia,transformation should propagate errors rather than eliminate them,
so that they can eventually be detect&éHis motivates the following notions.
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o @_>Q+—>

Figure 10. Two LOD-equivalent STGs which are not bisimilar.

Definition 4.6. (=;,4, <icoq @and LOD/TCOD-transformations)
Two STGsN and N’ areLOD-equivalentdenotedV ~,;,4 N, if

e N andN’ are both not output-determinate, or
e N and N’ arelanguage-equivalent and baihtput-determinate.
They are in thefCOD relation denotedV =<;.,q N/, if
e N andN’ are both not output-determinate, or
e N'is atraceeorrect implementation oV and both areutput-determinate.

An STG transformation is BROD/TCOD-transformatiorif the original and the transformed STG are
LOD-equivalent / in the TCOD relation. O

Recall that trace-correctness is weaker than language equivasémoejt allows to delete input signals
or to have additional occurrences of input edges. Hence, every-tc@idformation is also a TCOD-
transformation, but not vice versa.

One can observe that any transformation yielding a bisimilar STG is a LOBftnamation, but there
are LOD-transformations which yield a non-bisimilar STG, e.g. determinisatian output-determinate
STG, as illustrated in Fig. 10. Moreover, any transformation preserviagahguage and output-
determinacy can be made into a LOD-transformation if its domain is restricted tatelgperminate
systems. Below we list some TCOD-transformations which will be useful doldecomposition algo-
rithm.

For one of the transformations and for further use, we first introdogeesotions.

Definition 4.7. For transitiong, ¢’ of some STGt is a (syntacticjrigger oft’ ortriggerst’ if t*N°*t' # (.
A \-transitiont is aweak triggerof ¢/, if it triggers¢’ or another weak trigger af. A transitiont with
I(t) # \is asignal triggerof ¢/, if it triggerst’ or a weak trigger of’.

A transitiont is in aweak syntactic confliatith ¢/, if it is in syntactic conflict witht’ or with a weak
trigger oft’. O
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List of TCOD-transformations

RedPD Deletion of a redundant place.

RedTD Deletion of a redundant transition.

SecTC1 Type-1 secure contraction ofatransition.

LOD-SecTC2 Type-2 secure contractions aftransitions restricted to output-determinate STGs.

SecTC2' Type-2 secure contractions aftransitions which are not in weak syntactic conflict with an
output transition.

IIC Increasing the concurrency of inputs for deterministic and safe SE8Dsfinition 4.9.

The first three transformations in this list always yield a bisimilar STG and theid @D-transfor-
mations. Below we prove that LOD-SecTC2 and SecTC2’ are LOD-toamsftions and that IIC is a
TCOD-transformation (it is not a LOD-transformation since it changes thguiage). [IC is not in-
tended as a reduction operation, but it may be applied to thed&talministiccomponents, where it
is sometimes useful for converting speed-independent circuits into delagsitive ones [SKC99].
Observe also that the determinisation of@arnput-determinat&&TG NV is a LOD-transformation. In-
deed, iff N is output-determinate, then constructibgl (V) gives a language equivalent STG, which is
not only output-determinate, but even deterministic. The same is true if oitgoadtly minimises the
deterministic automaton.

Theorem 4.8. If N is obtained from some ST® by LOD-SecTC2 or SecTC2’, theN and N are
LOD-equivalent. <

Proof:
A secure contraction gives a language equivalent result in any gaBedorem 2.2.
Now we consider an output-determinafeand show thalV is also output-determinate. M [w)) M [z%))
andM[w)) My (w € (Sigh)*, x € Out), thenMy [w)) My andM y [w)) Ma with (M, M), (Ma, Ms) €
S’ for the ready simulatios’ of Corollary 2.3. Furthermore\/; [z*)) due to simulation)[z*)) due
to output-determinacy, antll;[z*)) due to ready simulation.

This settles the case of LOD-SecTC2, while for SecTC2’ (applied to trangitibremains to show
that V is output-determinate iV is; so assume the latter.

Consider firing sequences v of N such thatl(u) = I(v), My[u)[z*)) and My[v)M;. We will
now apply the simulatios of Theorem 2.2.2; to get a result on the level of transitions, observéhilsat
relation also is a simulation if the labelling &f is A for ¢t and the identity otherwise. This consideration
implies that e.g.u is simulated byu| _;, obtained by deleting all occurrencestoh u. Thus, we get
Mylu| ) [z*)) and M[v| —¢) M.

SinceN is output-determinate andu| _;) = I(v| —¢), we haveM [z*)). Therefore, we can take
somet’ € T and a minimakw € T such thathM,[wt'), I(t') = z* andi(w) = A. By minimality,
each transition inw triggers a transition imt’; hence each transition in is a weak trigger of the output
transitiont’, and(x) it does not share a preset-place withy assumption of SectTC2’; neither daés
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We conclude the proof by showing inductively thidi [w’) with w’| _; = wt’. As induction base, we
haveM/; [\). So assum@/; [w”) M andM;[w” | )M, wherew” | _; is a proper prefix ofvt’ satisfying
M [w”|—¢)M due to simulatior, and lett; be the next transition abt’. If M|t,) M’ we are done.

It remains to consider the case that/[t;). We observe that/ [t ), thatM and M coincide on the
places not adjacent to and thatt; andt¢ do not share a preset-place fy). Thus, the only reason for
—=M][t;) is that for someyy € ¢t* we havelV (pg, t1) > M (po).

We choosep; € t* such thaim; = W(py,t1) — M(p1) is maximal;m; is positive due tgy. We
check thatt can firem; times underd: for all p € °t, we haveM (p) + M(p1) = M((p,p1)) >
W((p,p1),t1) = W(p,t1) + W(p1,t1) (where the inequality follows fromdZ[t,)), and thusM (p) >
W(p1,t1)— M (p1)+W(p,t1) > mq; recall thatt has only arcs of weight 1. Firingunder) m; times
gives a markingl/”, which also satisfies the marking equality with. By our above considerations
and choice of, M"” enableg; recall thatt; needs no tokens froftt and is only disabled because of
some missing tokens itt — and even the largest of these deficits has been compensatéd ifthus,
M[t™ty). 0

The following definition of 1IC can only be applied to safe and deterministic §Ti@ese require-
ments are not too strict, since —as mentioned above — it is intended for thédiaahinistic components.

P

b1
P it

t1] a®
D2 t1] ot bE [t2
to] bt =

4 4
b3

Figure 11. Increasing input concurrency for the cafg.) = 1.

Definition 4.9. (Increasing Input Concurrency)

Let V be a safe STG and lét andt, be two transitions which are labelled with edges of two different
input signalse andb. If ¢; is a syntactic trigger of, via a single place- with no other incident arcs,
*t1 = {p1} andt2® = {p3} with p;* = {#1} and®ps = {t2}, increasing input concurrency (IIC) af
andt, results in the nelV’ defined as follows (cf. also Figure 11):
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o I"=Tandl' =1

o P'= P\ {p1,p2,p3} U{pt, 0}, 0% 04}

W'(p,t) = W(p,t) andW'(t,p) = W(t,p) forp e PN P andt € T',

(p§,t1) = W' (ph, ta) = W(pr, t1) andW'(t1,p}) = W' (t2, p}) = W(ta, p3),

'(t,p) = W'(t,p}) = W(t,p1) andW'(p§, t) = W'(p§,t) = W (ps, t) for t # t1, ta,
'(z,y) = 0 otherwise.

/

I I I

o My: = iic(My), where the functionic : [My) — N is defined as follow$/’ = iic(M) if:
M'(p) =M(p)forpe PN P’
If M(p1) = 1, thenM'(p}) = M'(p}) = 1 andM'(p§) = M'(p}) = 0
If M(ps) =1, thenM’'(p$) = M'(p4) = 0 andM'(p%) = M'(p%) = 1.
If M(ps) = 1, thenM'(p$) = M'(p%) = 0 and M’ (p§) = M'(p}) = 1
If M(p1) = M(p2) = M(ps) = 0 thenM’(pf) = M'(p}) = M'(p3) = M'(p}) = 0.
(Note that these four cases are mutually exclusive sivig safe.) <&

Theorem 4.10. (lIC is a TCOD-transformation)
Let N’ be the result of applying IIC for the transitionsandt, to a deterministic safe ST®. Then

(1) S ={(M,iic(M)) | M € [My)} (i.e. S andiic coincide) is a transition simulation betweahand
N';if (M, M') € S andt # to or M'(p§) = 0, thenM’[t) M7 implies M [t) M, with (M, M7) € S.

(2) [My) = M U M, whereM = S([My)) and M’ = {M] | IM" e M : M'(p§) = 1A
M'[ta) M in N'}.

(3) N’ is safe.

(4) N’ is deterministic.

(5) N’ is atrace-correct implementation bf.

Proof:
Leti(t;) = a* andi(ty) = b* for a # b.

(1) By definition of My, (Mn, My+) € S, s0 assuméM, M) € S and M [ty M,

o t & {t1,t2} Ups®: then®t C PN P and, sinceVl’ = iic(M), M'|s, = M|+, and M'[t) M.
Due to definition ofiV’, M!|p~pr = Mi|papr. If p1 € t*, observe that (p;) = 0 because
N is safe, andM’(p$) = M'(p}) = 0 by definition of M’; therefore,M;(p;) = 1 and
Mi(p) = M{(p}) = 1. Also, M'(p§) = M{(p§) = M'(p}) = M{(p}) = 0 and then in any
case M| = iic(My).

e t € p3*: thenM (p3) = 1 (by the safeness af), M'(p%) = M'(p}) = 1 and M'[t) M]. With
similar arguments as above\/;, M) € S.
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e t =t;:thenM(p;) = 1 and My (p2) = 1. Therefore M'(p$) = M'(p%) = 1 and M’ (ps) =
M'(p) = 0. Hence,M'[t1) Mj with M (p}) = M{(p}) = 0 andMj(p§) = M{(p}) = 1.
CIearIy,MﬂPUp/ = Ml’PUP’ and(Ml,M{> S

e { = {o: similar to the case = ¢;.

Now assume\V/’[t) M. A similar case analysis shows thaf to or M'(p§) = 0 implies M [t) M,
with (My, M7) € S.

Since(M, M’') € S implies M € [My), we haveM C [My/) by (1); this in turn implies that
M’ C [Mp), too.

Due to (1) andV» € M, amarking in[My-) \ M can only be reached via firing from a marking
which marksp{, i.e. such a marking is in’. Now takeM; € M’,i.e. I(M,M’) € S, M'[t2) M|
and M’(p$) = 1. This impliesM (p;) = 1in N, andM;(p}) = 1, Mj(p%) = M| (p%) = 0 and
Mj|papr = Mi|paprin N'.

We now consider all markings reachable directly frad. Clearly, M{[t1)M; with (M, M))
€ S for Mi[tita) My, i.e. My € M. Let now M [t)M; with ¢ # t;. We havet # ¢, due to
M (p}) = 0 andt & p3® due toM] (p%) = 0. Therefore’t N (*t2Uty*) = () in N, andt is activated
concurrently ta, underM’: M'[t) Mj[to) M3 andMy(p]) = M'(p}) = 1. Additionally, (1) implies
M]t)My and(My, My) € S. Thus, M4 € M’ implying [My+) € MUM’, which proves the claim.

Follows from (2) when considering the properties\dfand M.

ForM' € [My/), M'[t), M'[t') andt # t" we will show thatl(¢) # I(t); the claim is obvious for
the cas€t,t'} = {t1,t2}, and in what follows we assume thit t'} # {t1,t2} ().

Let M’ € M. Therefore(M, M') € S for someM. If t5 ¢ {t,t'} or M'(p{) = 0, then (1) implies
M{t) and M|[t'), and we are done sinc¥ is deterministic. Let w.l.o.gt = t2 and M’ (p{) = 1;
thus,M (p;) = 1 andM’(p}) = 1. Hence,M|t;) M;]t2). On the other hand, we hawé[t') due to
(1) andt’ # 1 by (x). Together, this gived/; [t') and again the claim follows from the determinism
of N.

Let M' € M’. Due to (2), there is a markindy/” € M with M"[t;) M" and M” (p§) = 1. With

(3), we conclude; ¢ {t,t'} andM"(p%) = M'(p%) = 0. The latter shows that; ¢ *t U *¢’ and

thusM”[t) and M"[t'). Hence, there is a markinyy of N with M [t) andM [t'), which proves the
claim.

Let M/ [v))M for somev € (Sig£)*. SinceN is deterministic, there is a unique transition se-
quenceu with [(u) = v. Due to (1), My [u) M’ with (M, M') € S, and obviouslyM . [v)) M,
which proves (TC1).

If M'[x+)) for somex € Outnr, clearly this is due taVf'[t) with ¢ # ¢5. Then (1) impliesM [t)
and thereforé\/[z+)).
0

Theorem 4.10(4,5) shows that IIC is indeed a TCOD-transformationth&umore, this result can

easily be extended to more general cases:
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Figure 12. Counterexample for application of IIC to an ottpeterminate but non-deterministic STG. The STG
on the left hand side is output-determinate, but the STAtiegufrom applying IIC forb* andc™ is not, i.e. IIC
is not a TCOD-transformation in this case.

e Three or more sequential transitions. . . , t,, (each labelled with a different input) can be made
concurrent with a similar construction.

e Itis also possible to allow more than one place in the presat afid the postset df,.
e A bit surprisingly,t; could also be labelled with an output signal.

For the first two cases, the proof structure stays the same — the proohfjesdightly more complicated.
In the last case, the proof stays the same since it never used the fagtithabelled with an input.
Regarding termination, 1IC can only be applied finitely many times to a final coergoconsider
the placep, ‘in the middle’, which only has a single transition in its pre- and in its postset;diftices
the number of such places. Observe that IIC cannot be applied to thelaess (¢, p}, p¢ andp?).
Finally, observe thalv has to be deterministic rather then output-determinate as the counterexample
in Figure 12 demonstrates.

4.3. The Decomposition Algorithm

Now, we describe the extended version of the STG decomposition algoritiviw®2, VK06], which
uses the TCOD-transformations of the previous section. Given a spdoficSTGV, the algorithm
works as follows:
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e Choose deasible partition(In;, Out;);c; for some setl with Out; C Outy andIn; C Iny U
Outy for eachi € I (as explained in greater detail below). For eaehl, a componen’; will
be constructed, which produces the signal®@irt; by taking into account only the signalsin;.

e Construct annitial decompositionC; ;< as follows. For each € I, theinitial componentC; =
(P, T,W,l;, My, In;, Out;) is a copy of N except for the labelling and the signal classification.
If [(t) € (Iny U Outy) \ (In; U Out;), then the label is changed tdt) = A; sucht and their
original signals arédnidden In contrast, transitions which have labelin N already are called
specification dummies spec-dummiefor short.

Then perform the following steps to one of thgafter the other:

e Repeatedly apply TCOD-transformations or backtracking:

Backtracking For some hidden signal¢ In;UQOut;, adds to In; and replace’; by the respective
new initial component.

e Eventually, checlC; for output-determinacy. If the check fails, perform backtracking fonso
hidden signal or, if no hidden signal is left, report thétis not output-determinate. Otherwise,
component; is constructed.

We now give some more detailed explanations for the steps of our algorithfeasible partition
is a family (In;, Out;);c; for some sef such that the set®ut;, i € I, are a partition oDwut and for
eachi € I we haveln; C Iny U Outy \ Out;, and furthermore:

(F1) If signals and output signat: of NV are in structural conflict, them € Out; impliess € In; for
s € In ands € Out; for s € Outy for each: ¢ 1.

The rationale for this is: clearly, a component responsible for outpuakigmust at least ‘see’

any signal that could be in dynamic conflict within V; if such a signal is an output as well,
the component should also produce it, because two conflicting outputstdamproduced by two

different components in a speed-independent way.

(F2) Ifthere are, ¢’ € Ty such thati(¢') € Out; andt is a signal trigger of’, then the signal of is in
In; U Out;.

The latter signal might be ifin; even if it belongs taut; in this case, it will be produced by
some other component, and tilk component just listens to it.

As yet, it is not clear how to choose a feasible partition that gives an optiecaldposition in some
sense, e.g. one with the least overall size of the reachability graphs afnifjsoments. But there is a
canonical candidate: according to (F1), output signals in structurdlictomust be in the sam@ut;,
and there is a finest partition 6fut satisfying this; for each of the resulti@ut;, there is a least set
In; such that (F1) and (F2) are satisfied. In many cases, this canoras#blf partition will have one
(In;, Out;) for each output signal.

The main idea of the algorithm is now to remove f&ansitions using appropriate secure transition
contractions and other TCOD-transformations. This way, we hopefullyerttekcomponent STGs small



30 V. Khomenko, M. Schaefer and W. Vogler / Output-Determinacy anttAsynous Circuit Synthesis

enough for the output-determinacy check and subsequent synthesi$dasible. In amptimistic strat-
egy, one performs TCOD-transformations as long as possible — with our lisE@fO-transformations,
this will terminate eventually, see below, — and only backtracks if forced toeifet$t step.

Observe that backtracking modifies the feasible partition in such a way thagshlting partition
is feasible again; in particulaf;; already has all signals that are in structural conflict with some output
signal of C;.

Backtracking undoes all the TCOD-transformations that have alreagly performed orC;. In
many cases, it will be possible to perform some of these also on the new imitigdanent; hence,
we have studied in [SVWKO06] how to implement backtracking in such a wayrtbatlways all the
TCOD-transformations are undone.

The algorithm of this paper is a generalisation of the decomposition algorithwMKig], where
the latter only dealt with deterministic specifications; for these, the latter algoctimsidered the same
partitions, transformations, and backtracking. Since the concept aftedgberminacy was not available,
it was required to remove alktransitions; thus, backtracking had also to be performed for a hiddealsig
if a respective transition could not be contracted just for technicabrsa®.g. because it was on a loop
or had an arc with the weight greater than one. Since backtracking apph#idransitions of a signal,
one had to un-hide a number of transitions just for technical reasonsuglitthey had already been
contracted successfully. This can make the reachability graph much, ladgix from the perspective
of circuit synthesis the additional signal might not be needed. We hawehtrece to avoid this in the
present paper, and this is an important contribution.

If a transition contraction generates a new dynamic auto-conflict, then xpésireed in [VWO02,
VKO06] — this is an indication that the original signal of the contracted transitigght be important
for producing the proper outputs; here we can add that the latter porrds to a violation of output-
determinacy. Thus, to be sure to get a correct result, it was recommaenbadktrack in case of a new
dynamicauto-conflict; to make this strategy efficient, one has to avoid the generétioa eachability
graph, hence it was recommended to backtrack in case of astreatural auto-conflict. With this
strategy, the algorithm of [VK06] is guaranteed to find a correct decaitipn without any final check.

In another version discussed in [VKO06], the algorithm does not batkirecase of a new structural
auto-conflict. The hope is that the conflict might not indicate a dynamic aartfiict, and that avoiding
backtracking gives a smaller component. The price to pay is a final saretgkas in our present
algorithm: in the end, components had to be checked for determinism, whichesrestrictive than our
check. The experience reported in [SVWKO06] is that for this versiomtpe is most often in vain.

Consequently, we recommendanservative strategywhenever the contraction of a hidden tran-
sition creates a new structural auto-conflict, one should backtrack aegspective signal — unless the
conflicting transitions are duplicates and one of them can thus be deletiis latter case, the conflict
clearly does not indicate a violation of output-determinacy. There is no obviecommendation if a
new structural auto-conflict is created by the contraction of a spec-dummy

If all components are constructed successfully, circuits are syntldefss® them using tools like
PETRIFY or MPSAT. Such tools build the reduced state vector tables for Boolean minimisationdior ea
C;, which can be viewed as derived from the respective deterministic finiteration DA(C;). Hence,
the equations derived from the state graphs give a correct implementéatiom specificationV, as we
will prove in the following.
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4.4. Correctness

Before we present the correctness proof, observe that we haitgopad theA-transitions into hidden
transitions and spec-dummies. Observe further that notions like signartagd weak syntactic conflict
(Definition 4.7) are concerned witkitransitions; when we speak of signal triggers in condition (F2), we
considerN, i.e. the respectiva-transitions are spec-dummies; when we apply SecTC2’ to a component
and check for a weak syntactic conflict, the respeciimeansitions could be hidden transitions as well
as spec-dummies. We start with two lemmata.

Lemma 4.11. Let N be an STG with an initial decompositidfy;);c; where all components are output-
determinate. The(iC;);cs is a trace-correct distributed implementation\of &

Proof:

(TC1) Letw € L(N) duetou € T™*. Then, for one transition of after the other, we can fire
all copies of the respective transition in tg. In more detail, all copies with label not equal Xaare
synchronised in the parallel composition and fire as one transition; the atpegs fire one after the
other. This shows that |- € L(C).

(TC2) & (TC3) Again, letw € L(N) due tou € T*. To show (TC3), considef € I such
thatz € Out; andw|c,z* € L(Cj) due to the firing sequence with i(t) = z*. Sincel;(v) =
w|c; = l;j(u) andCj is output-determinate, we have a firing sequene&’ of C; with I;(u') = A
andl;(¥) = z*; choose such @ with minimal length. By minimality, each transition il triggers
a succeeding transition ft’; thus, ifu’ contained a hidden transition, we could consider the last one,
which would be a signal trigger af, a contradiction to (F2) fo€';. We conclude that all transitions in
u' are spec-dummies. Thus, firing/t' in all C; as in the first part of this proof, we get that c2* is a
trace ofC'.

Whenevem | ca* is a trace ofC, we havew| ¢,2* € L(C;). So from the above argument, we also
see that (TC2) holds since we can fir¢'t' in N as well, showingvz® € L(N). O

Lemma 4.11 will be used as the induction base for our main theorem, which seisstbctness of
the new decomposition algorithm.

Lemma 4.12. If an STGN is not output-determinate, in every initial decompositi6h);c; someC; is
not output-determinate as well. O

Proof:

Suppose thatMy[wz*)) and My[w))M in N with = € Out;. Then M¢,[w|c,2*)) and
Mc,[w|¢,))M in C;. Assume now thaf; is output-determinate, i.eV/[z*)) and M [vt) with [(t) =
l;(t) = ¥ andl;(v) = X. As in the previous proof, we chooseto be minimal; then, all transi-
tions inv are weak triggers of in C;, none of them can be a signal triggerif and thus they all are
spec-dummies. This shows thak[vt) also gives rise td/[z*)) in N, henceN is output-determinate
contradicting the hypothesis. O

Theorem 4.13. (Correctness)
Consider the application of the decomposition algorithm to an 3T.G

(1) If only the TCOD-transformations from the list in Section 4.2 are apptieglalgorithm terminates.
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(2) If all components are constructed successfully, theis output-determinate(C;);c; is a trace-
correct distributed implementation of, and (DA(C;)).c; is a correct distributed implementation
of V.

(3) If the algorithm reports thaV is not output-determinate, then this is the case. O

Proof:

(1) This is essentially a result from [VKO06]: backtracking un-hides aérdsignal, which can only be
done finitely often. When no backtracking occurs, contractions anditiam deletions reduce the
number of transitions, while the deletion of places reduces the number elsplathout increasing
the number of transitions.

Recall that IIC is only applied to the final components after determinisatiomanihixed up with
the other operations; as it was argued above, it can be applied only fiofitefythen.

(2) Suppose all components are constructed successfully.were not output-determinate, we could
consider the initial components that arise after the last backtracking. Byriae4.12, one of them
would not be output-determinate, and this would be preserved by the Ti€DBformations, con-
tradicting our hypothesis.

This consideration also implies that all mentioned initial components are outfartydeate; hence,
by Lemma 4.11 this initial decompositi@n’; )< is a trace-correct distributed implementation\of
Furthermore, due to the definition of TCOD-transformations, each fimapooent is a trace-correct
implementation of its corresponding initial component. Theorem 4.4 then impliethalsthe set of
final components is a trace-correct distributed implementatiow.of

Also determinisation of &; is a TCOD-transformation, and the third claim about the deterministic
automatong DA(C;));c; follows from Theorem 4.3.

(3) The algorithm reports thaV is not output-determinate only if there is some component without
hidden signals which is not output-determinate. In this case, the respidtiecomponent is also
not output-determinate; this initial component is identicaMexcept that some outputs Hf might
be inputs. It is easy to see that in this situation the violation of output-determiaacgs over taV.

O

It should also be noted that for a consistdhbnly consistent components are produced, cf. [VKO6].
Compared to the approach of [VK06], the above correctness prooh&aerably simpler and deals with
more general specifications. The price we pay is the check for outpertrtieacy, which can be avoided
in the approach of [VKO06] (at the expense of requiriNgto be deterministic and prohibiting dummies
in the final components). Additionally, the proof in [VK06] takes care tovsltwat, for deterministic
specifications, type-2 secure contractions can be applied without tiestricSince we use the same
transformations as in [VKO06], we can read off from the correctnessfpihere that the same result
applies here if in the specificatioN there are no weak triggers of artransitions in structural conflict
with output transitions; this observation means that we do not have to chiealeék syntactic conflicts
and this can save a little time.
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5. Experiments

As described in the previous sections, it is now possible to laavansitions in the final components as
long as they are output-determinate. Moreover, the new approach cepealsed to speed up existing
decomposition strategies, in particutege decompositiofsVWKO06] (denoted REEOLD here). TREE-
OLD generates all components together, re-using the intermediate STGs whigerarated during
decomposition. For efficiency, only some signals are contracted at eaghaf the algorithm, resulting
in re-usable intermediate STGs. If not all transitions of some sigman be contracted, the contrac-
tion of s is postponed to later stages of the algorithm, which is detrimental for perfeerdue to the
decreased usability of intermediate STGs. Note #ilathe transitions ok are postponed, even if only
oneof them cannot be contracted, because backtracking is performsiyfals rather than individual
transitions. For practical STGs however, most of the postponed sigarabsctually be contracted at later
stages of the algorithm.

The new approach (REENEw) can avoid such postponing of signals under certain circumstances:
if in an intermediate STG a transition of a signatannot be contracted due to a new structural auto-
conflict, postponing fos is performed as in REEOLD. But if all transitions are non-contractible due to
technical reasons only (e.g. if they are not safeness-preserviadpacktracking is performed and the
remaining non-contractible transitions are left as dummies in the intermediateAST&ntioned above,
most of them will be contracted at later stages, and otherwise they will remtia final component.

We applied REENEW to a number of benchmarks constructed from two basic®\ -inspired hand-
shake components (cf. [EB02]) also used before by [CCO06]: thaysequencerwhich performs two
subsequent handshakes on its two ‘child’ ports when activated on isnpgort, and the 2-wapar-
alleliser, which performs two parallel handshakes on its two ‘child’ ports whervatetdl on its ‘parent’
port; either can be described by a simple STG. The benchmark exangp@a ST REE-N are complete
binary trees with alternating levels of sequencers and parallelisers, asiasin Fig. 134V is the num-
ber of levels), which are generated by the parallel composition of the etarge3iTGs corresponding to
the individual sequencers and parallelisers in the tree. We also wotkedtiver benchmarks built from
handshake components (e.g. trees of parallelisers only); the resultstdidfar much, so we consider
here only $QPARTREE-N.

In contrast to the decomposition method of [CC03,CCO06], we allow compemetihh more than one
output. This was utilised by choosing the initial partition in such a way that eacipenent of the de-
composition corresponds to one handshake component. Other partitivesooftputs might lead to even
faster synthesis; there are also ideas for the automatic detection of suaaitiens, see [SVWKO06].

We applied four variants of tree decomposition to these benchmarks, assvetdind-alone synthesis
with PETRIFY and MPSAT. (The tool for CSC conflict resolution and decomposition presented iOCC
Car03] was not available from the authors.) The experiments were ctawtlan a PC with Pentium 4
HT/3GHz processor and 2GB RAM.

TREEOLD is compared with REENEw for ordinary contractions as described in Section 4.3 as
well as forsafeness-preserving contraction®. contractions which do not destroy the safeness of the
STG. (This kind of contractions is needed to combine decomposition with unfpotéchniques for
STG synthesis, see [KS07].) Essentially, the preservation of safenassther condition which can
prevent some contractions and thus increases the runtime. This resultedmeiioned four series of
experiments, see Table 1.
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Size Signals
Benchmark |P| —|T| |In| — |Out]|
SEQPARTREE-05 382 — 252 33-93
SEQPARTREE-06 798 — 508 65 —189

SEQPARTREE-07 1566 — 1020 129 - 381
SEQPARTREE-08 3230 -2044 257 - 765
SEQPARTREE-09 6302 -4092 | 513-1533
SEQPARTREE-10 12958 — 8188 | 1025 - 3069

Figure 13. Left: SEQPARTREE-03. Filled dots denote active handshake ports (they carestendshake), blank
dotes denote passive ones. Each port is implemented by gmalsj an input and an output. If two ports are
connected then the parallel composition merges these fgoals into two outputsRight: Sizes of the STGs in
the SEQPARTREE series.

In the end, the final components were synthesised (which includes thiaties of CSC conflicts)
with PETRIFY, which was possible for every component. As a consequence, thisghatvthe de-
composition is correct: a necessary condition for synthesis is the abskB@&C conflicts. However,
a violation of output-determinacy is a special case of a CSC confllith cannot be resolveas dis-
cussed in the following section. Hence, the resulting components are indégaat-determinate, and
Theorem 4.13(1) guarantees the correctness. Moreover, the rgsuiirponents turn out to be the same
for all series, and hence the synthesis times are given only once.v@ltkat the latter property makes
these benchmarks especially useful for comparing the four variante afgbrithm presented in Table 1.

The synthesis with stand-alon&PRIFY or MPSAT did not terminate within 12 hours, even foe§-
PARTREE-05, as the corresponding STGs are very large. We consider it ambl@achievement that
the proposed approach could synthesise them so quickly — e@ARTREE-10 with more than 4000
signals was synthesised in less than 11 minutes. One can see that leavicgniragtible transitions
as dummies in the intermediate STGs is useful, especially for safeness¥jprgsmntractions. The
reason is that, in this variant, the decomposition algorithm encounters)xtoaiasitions which are non-
contractible due to technical reasons (viz. they do not preserveessienREEOLD would backtrack
and postpone for the respective signals, which significantly increasesitime of this approach. As
one can see, the new approach leaving such transitions as dummies in thmediéée STGs is much
faster.

6. Output-Determinacy and Internal Signals

Up to now, we considered STGs withdaternal signalsi.e. signals which are produced by the circuit
but are not visible to the environment. Usually, such signals are introcudednatically into the STG
during the synthesis process, mainly in order to resolve encoding conHidgtglso to perform logic
decomposition (i.e. splitting large gates into smaller ones) or — as a recentadipplie to preserve
speed-independence during decomposition [SVWWO08].
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Safe Non-Safe
Benchmark TREENEW | TREEOLD TREENEW | TREEOLD Synthesis
SEQPARTREE-05 1 1 1 2 5
SEQPARTREE-06 4 4 3 5 16
SEQPARTREE-07 8 9 8 9 22
SEQPARTREE-08 17 32 19 21 1:02
SEQPARTREE-09 1:18 1:27 1.24 1:29 1:30
SEQPARTREE-10 6:03 42:37 5:49 7:04 4:32

Table 1. Results for the handshake benchmarks. Columns /e thg pure decomposition time, the last column
gives the BTRIFY synthesis time for the components. Times are given in sexonds minutes:secondSafe
means safeness-preserving contractionspttianethod does not leavi-transitions in the intermediate results,
thenewone does.

There are several possible interpretations for internal signals, diejgeon the role the STGs plays.
Though an STG is always a specification of an asynchronous circuitc@nsnon for an STG to go
via a series of refinements, until eventually the ‘final’ STG is produceu frdich the gate-level netlist
is synthesised. Hence, the ‘distance’ from the STG to the circuit netlisvan in particular, in the
context of decomposition, the specification STG is ‘far’ from the finalitrevhile the component STGs
are ‘close’ to it.

As a consequence, a far-off specification should only describextegnalbehaviour of a circuit
(i.e. its interface to the environment) rather than details of the physical impletioent&or this purpose
internal signals are not needed, and so a specification STG shouldmtatrcthem. (If it does contain
them, they can be treated like a designer’s suggestion; in particular, ttheesigtool is free to turn them
into dummies, as they are anyway ignored by the environment.) On the otlgrfbathe ‘final’ STG
the internal signals are useful and can be mapped to physical wireseHenthis STG, it makes sense
to consider them as outputs of the circuit, which (unlike dummies) occur insti@oe are a part of the
state encoding.

The semantics of internal transitions (i.e. whether they are treated as dummassoatputs) is
important for the definition of output-determinacy; indeed, whether the STabtsut-determinate or
not may depend on the chosen semantics. As described above, we thitr@st internal transitions as
dummies in the specification STG and as outputs in the implementation STG. Suchreetremight
be seen as somewhat unusual, particularly considering the internatitnamsn the specification as
dummies. However, we argue that it is reasonable, as considering thasiions as outputs leads to
undesirable situations where an STG is not output-determinate, but still imptkdnheshy a deterministic
one, as illustrated in Fig. 14. On the other hand, the proposed treatmerg@lievto lift Proposition 3.3,

stating that only output-determinate STGs can be deterministically implemented, tasthe@ftSTGs
with internal signals.

Formally, an STG is now defined @ = (P, T, W, My, In, Out, Int,l), wherelnt is the set of
internal signals, such thdint N (In U Out) = 0, and! is extended accordingly. We will denote by
Ezt = In U Out the set ofexternalsignals of/V.
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Figure 14. Counterexample: the non-output-determinat® 8i the left with internal signals,, v is imple-
mented by the STG on the right.

We now generalise the notion of correct implementation given in Definition 3.1 teeimgntations
with internal signals. Observe that we requiré N Exty = () for technical reasons only; this can
always be achieved by a suitable renaming.

Definition 6.1. (Correct Implementation with Internal Signals)

A deterministic STQ' (with internal signals) is aorrect implementationf an STGN without internal
signals ifinc C Iny, Outc = Outy, Intc N Exty = 0, and for allw and allM such thatM y [w)) M
the following hold:

(IC1) There is atrace of C such thatM¢[v)) with v| gy, = W|Ert,. -

For every trace of C' such thatM¢[v)) M’ with v| gy, = W|Erte:

(IC2) If a € Iny andM[a™)), then eithetM'[a*)) ora & Inc.

(IC3) If 2 € Outy, thenM[2%)) iff M'[vcxt)) for someve € (Inth)*. o

In this definition, the items (IC1)/(1C2)/(1C3) correspond to (C1)/(C2¥ €om Definition 3.1 with
the following differences: clearly, every trace of the specification meigidssible in the implementation.
However, now the implementation might produce this trace with the help of intsigradls. Hence, in
(IC1) we just require that these traces coincide externally, and althOugltdeterministic, there is the
possibility that different traces look externally equal and that a trameN can be matched in different
ways byC'. Observe that the implementation is still allowed to have fewer inputs than thiicgsan.

Since internal signals are introduced for technical reasons like resobfti©SC conflicts, the result-
ing components are not to be considered as a specification but rathehiikev@are-close implementa-
tion. Therefore, the internal signals should be treated like invisible outphis.has two consequences
for the handling of inputs in (IC2), resulting from the fact that the envinent cannot observe the in-
ternal signals o€ inputs of the environment are produced whenever a corresponxtieignal trace has
occurred, no matter in which state the implementation is. Therefore, the implememtatgt be ready
to receive an activated input il states corresponding to an external trace, i.e. in the corresponding
STG an input cannot be triggered by an internal transition. (While the laitetitton is common and is
also needed to guarantee speed-independence, the former condfgéos fdifm the handling of inputs



V. Khomenko, M. Schaefer and W. Vogler/ Output-Determinacy anttAsynous Circuit Synthesis 37

in the definition of output-determinacy.) In contrast, outputs can be prddgdaternal signals, because
the environment will wait for the circuit until the output is produced.

Further justification of soundness and usefulness of these assumgatiobs tound in [SVO05] in the
discussion after the correctness notion with internal signals.

Violation of output-determinacy always results in a CSC-conflict, becaustrdice can be executed
in two different ways, the reached states obviously have the same staie Bxlow we show that this
special conflict cannot be resolved by insertion of internal signalfadfy we prove a more general
statement: if a specification is not output-determinate, it cannot be implementeddigrministic STG
with internal signals. Thus, if an STG is not output-determinate, then thi ofstbehaviour-preserving
insertion of internal signals is also not output-determinate and still has C&ficen The result below
is an extension of Proposition 3.3 to implementations with internal signals.

Proposition 6.2. Let N be an STG without internal signals aad(with internal signals) be a correct
implementation ofV. ThenX is output-determinate. O

Proof:

Forz € Outy, let My[w))M;[z*)) and My[w))M,. Then, by (IC1) of Definition 6.1, we get
Mc[v)) M’ for somev such thatw| gy, = w|pe, and thus,M’[v'z*)) for somev’ € (Int3)* by
M;[z*)) and (IC3). Therefore, by (IC3)V5[z™)). O

7. Conclusion

In this paper we proposed the concept of output-determinacy, whicheeerglisation of determinism.
It allowed us to define in a natural way a semantics of non-deterministic SihGugrticular STGs
with dummies. We showed that a specification is ill-formed if it is not output-detetmimdnereas the
semantics of an output-determinate STG is its language. Moreover, for gedflautput-determinate
STGs we gave a denotational (language-based) notion of a correctrienpigtion, and showed that it is
consistent with the corresponding operational notion. The computatiomgdlexity of checking output-
determinacy has been investigated for several important net clasdes paactical test for the cases of
safe or bounded divergence-free STGs has been developed.

One of the main application of the theory developed in this paper is the newithigdor decom-
position of STGs. This algorithm is much more flexible than the one in [VWO02,6]Kh particular,
it no longer requires that all the-transitions must be contracted in the final components, and it can use
more net reductions; moreover, the list of such reductions can easiktdreded by adding new TCOD-
transformations. The experimental results show that our decompositiaitlahg@an handle very large
STGs efficiently. Combined with tools for logic synthesis [KS07], it can kedua the context of con-
trol re-synthesis of BLSA specifications, as mentioned in the introduction. An approach to re-sysithes
using decomposition can be found in [SVWWO03].

Acknowledgements

We would like to thank Dominic Wist for helping us with generating the benchmarkss research
was supported by DFG-projects 'STG-Dekomposition’ V0615/8-2, aadribyal Academy of Engineer-
ing/EPsRrcgrant EP/C53400X/1 (BvAC).



38 V. Khomenko, M. Schaefer and W. Vogler / Output-Determinacy anttAsynous Circuit Synthesis

References

[And83] C. Andie. Structural transformations giving B-equivalent PTsndh Pagnoni and Rozenberg, edi-
tors,Applications and Theory of Petri Netsformatik-Fachber. 66, 14—-28. Springer, 1983.

[Ber87] G. Berthelot. Transformations and decompositiohsets. In W. Brauer et al., editorBetri Nets:
Central Models and Their Propertiekect. Notes Comp. Sci. 254, 359-376. Springer, 1987.

[Ber93] K. v. Berkel. Handshake Circuits: an Asynchronoushitecture for VLSI Programminglnterna-
tional Series on Parallel Computatiph, 1993.

[Car03] Josep Carmon8tructural Methods for the Synthesis of Well-Formed ComguiSpecifications?hD
thesis, Universitat Policnica de Catalunya, 2003.

[CCO3] J. Carmona and J. Cortadella. ILP models for the ®gistof asynchronous control circuits.Rroc.
of the IEEE/ACM International Conference on Computer AiDedign pages 818-825, 2003.

[CCO6] J. Carmona and J. Cortadella. State Encoding of LAsyachronous Controllers. IRroc. DAC'06
pages 939-944. IEEE Computer Society Press, 2006.

[Chu87] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theo®fiecifications PhD thesis,
MIT, 1987.

[CKK+97] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagrand A. Yakovlev. BTRIFY: a tool for
manipulating concurrent specifications and synthesisyiawonous controllersdEICE Trans. In-
formation and Systemk80-D, 3:315-325, 1997.

[CKKT02] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagrand A. Yakovlev. Logic Synthesis of
Asynchronous Controllers and Interface3pringer, 2002.

[EBO2] D. Edwards and A. Bardsley. ABSA: an Asynchronous Hardware Synthesis Langudgee Com-
puter Journaj 45(1):12-18, 2002.

[Ebe92] J. Ebergen. Arbiters: an exercise in specifying écbmposing asynchronously communicating
componentsSci. of Computer Programming8:223—-245, 1992.

[Esp98] J. Esparza. Decidability and complexity of Pettipr@blems — an introduction. In W. Reisig and
G. Rozenberg, editorsectures on Petri Nets |: Basic Modelsect. Notes Comp. Sci. 1491, pages
374-428. Springer-Verlag, 1998.

[ITRO5] International Technology Roadmap for Semicondtgt Design, 2005.
URL: www.itrs.net/Links/2005ITRS/Design2005. pdf.

[Kho03] V. Khomenko. Model Checking Based on Prefixes of Petri Net UnfoldingkD thesis, School of
Computing Science, Newcastle University, 2003.

[KKT93] A. Kondratyev, M. Kishinevsky, and A. Taubin. Symsis method in self-timed design. Decomposi-
tional approach. IMEEE Int. Conf. VLS| and CADpages 324-327, 1993.

[KKTV94] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Vshavsky.Concurrent Hardware: The Theory
and Practice of Self-Timed Desigdohn Wiley & Sons Ltd., 1994,

[KS07] V. Khomenko and M. Schaefer. Combining decompositimd unfolding for STG synthesis. In
ICATPN '07: 28th International Conference on Applicaticensd Theory of Petri Nets and Other
Models of Concurrengypages 223-243, 2007.

[Mel98] S. Melzer. Verifikation Verteilter Systeme mit Linearer — und Constirddrogrammierung PhD

thesis, Technische UniverattMinchen, Utz Verlag, 1998.



[Mil89]
[Mur8g]

[Sch07]

[SKC+99]
[SV05]
[SVWKO06]

[SVWWO8]

[VKO6]
[VWO2]

[YKK *+96]

V. Khomenko, M. Schaefer and W. Vogler/ Output-Determinacy anttAsynous Circuit Synthesis 39

R. Milner. Communication and Concurrenci?rentice Hall, 1989.

T. Murata. Petri Nets: Properties, Analysis and Aggttions. Proc. of the IEEE 77(4):541-580,
1989.

M. Schaefer. BsiJ - a tool for decomposition. Technical Report 2007-11, ©rsity of Augsburg,
2007.

URL: http://www.informatik.uni-augsburg.de/de/forschung/reports/.

H. Saito, A. Kondratyev, J. Cortadella, L. Lavagno, andYakovlev. What is the cost of delay
insensitivity? InProc. CAD'99 pages 316-323. IEEE Computer Society Press, 1999.

M. Schaefer and W. Vogler. Component refinement an@ G8lving for STG decomposition. In
Vladimiro Sassone, editofFOSSACS Q4_ect. Notes Comp. Sci. 3441, pp. 348-363. Springer, 2005.

M. Schaefer, W. Vogler, R. Wollowski, and V. KhomemkStrategies for optimised STG decomposi-
tion. In ACSD pages 123-132, 2006.

M. Schaefer, W. Vogler, D. Wist, and R. Wollowski. Ading irreducible CSC conflicts by internal
communication. Technical Report 2008-02, University ofaburg, 2008.
URL: http://www.Informatik.Uni-Augsburg.DE/skripts/techreports/.

W. Vogler and B. Kangsah. Improved decompositionighsi transition graphs-rundamenta Infor-
maticae 76:161-197, 2006.

W. Vogler and R. Wollowski. Decomposition in asynchows circuit design. In J. Cortadella et al.,
editors,Concurrency and Hardware Desighect. Notes Comp. Sci. 2549, 152 — 190. Springer, 2002.

A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagnand M. Pietkiewicz-Koutny. On the models
for asynchronous circuit behaviour with OR causalfyrmal Methods in System Desjgh189-233,
1996.



