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Abstract. Signal Transition Graphs (STG) are a formalism for the description of asynchronous
circuit behaviour. In this paper we propose (and justify) a formal semantics of non-deterministic
STGs with dummies and OR-causality. For this, we introduce the concept ofoutput-determinacy,
which is a relaxation of determinism, and argue that it is reasonable and useful in the speed-inde-
pendent context.

We apply the developed theory to improve an STG decomposition algorithm used to tackle the state
explosion problem during circuit synthesis, and present some experimental data for this improved
algorithm and some benchmark examples.
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1. Introduction

Asynchronous circuits are a promising type of digital circuits. They have lower power consumption
and electro-magnetic emission, no problems with clock skew and related subtle issues, and are funda-
mentally more tolerant of voltage, temperature and manufacturing process variations [CKK+02]. The
International Technology Roadmap for Semiconductors report on Design [ITR05] predicts that 22% of
the designs will be driven by handshake clocking (i.e. asynchronous)in 2013, and this percentage will
raise up to 40% in 2020.
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Figure 1. OR-causality (the ‘interesting’ part of the STG ishighlighted):a+ andb+ are concurrent inputs, and the
outputx+ can be produced upon arrival of either of them. Note that the two transitions labelledx+ are in dynamic
auto-conflict, i.e. the specification is non-deterministic. However, it still can be implemented by the deterministic
circuit [x] = a ∨ b.

In this paper we are concerned with an important subclass of asynchronous circuits, calledspeed-
independentcircuits, i.e. circuits which work correctly regardless of their gates’ delays (the wires are
assumed to have negligible delays, or, alternatively, wire forks are assumed to be isochronic).Signal
Transition Graphs (STGs)[Chu87] are a formalism for the specification of such circuits. They are a
class of interpreted Petri nets in which transitions are labelled with the rising and falling edges of circuit
signals.

When a circuit is synthesised from an STG, it is often assumed that the specification is deterministic
(in the sense of automata and formal language theory), and its semantics is theset of its possible traces,
i.e. its language. As the final implementation must be deterministic, it may seem reasonable to confine
oneself to deterministic specifications only. However, sometimes this turns out tobe too restrictive in
practice. There are several situations which naturally give rise to non-deterministic specifications which
still can be synthesised:

Dummy transitions For convenience of modelling, the designers often usedummytransitions in STGs,
which are ‘silent’ transitions not corresponding to any signal change. Such transitions make the
STG non-deterministic.

OR-causality When a safe Petri net is used for modelling a situation where the system has torespond
to any of several possible stimuli in the same way, non-determinism naturally arises,1 as shown in
Fig. 1. OR-causality has been studied in [YKK+96].

Address for correspondence: M. Schaefer, Institut für Informatik, 86135 Augsburg, Germany
CCorresponding author
1OR-causality can also be modelled as a non-safe Petri net without non-determinism [KKTV94,YKK+96], but in practice safe
Petri nets are preferable as they are much easier to analyse.
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Figure 2. Non-determinism due to hiding. After hiding signals a andb, the STG becomes non-deterministic, but
it can be implemented (the system can simply wait forc, and producex upon receiving it; inputd can be ignored).
Note that the two branches after the non-deterministic choice are not entirely symmetric, as the upper one has an
inputd which is not present in the lower one.

Hiding of signals Non-determinism naturally arises when in a deterministic specification some of the
signals are hidden (i.e. the respective transitions are labelled with the empty wordλ), as illustrated
in Fig. 2. In fact, hiding of signals is an essential part of the decomposition algorithm of [VW02,
VK06], which we will improve in the present paper.

To the best of our knowledge, no satisfactory formal semantics of non-deterministic STGs and in
particular for dummy transitions2 has been given so far (we will show below that the language isnot a
satisfactory semantics in the non-deterministic case). In this paper we propose (and justify) a formal se-
mantics of non-deterministic STGs. For this, we introduce the concept ofoutput-determinacy, which is a
relaxation of determinism, and argue that it is reasonable and useful in the speed-independent context; cf.
for example [Mil89] for the concept of determinacy. In particular, it is shown that for output-determinate
STGs the languageis a sufficient semantics(see Section 3), and this also holds in the case of distributed
STGs (see Section 4). We also prove that an STG cannot be implemented as an speed-independent circuit
if it is not output-determinate (see Section 6). A large part of the paper is devoted to an important appli-
cation of the developed theory of output-determinacy: we will generalise thedecomposition algorithm
of [VW02,VK06] and prove its correctness with our theory.

We will now discuss how decomposition fits into the design flow for synthesisingasynchronous
circuits from STGs.

PETRIFY [CKK+97, CKK+02] is one of the commonly used tools for synthesis of asynchronous
circuits from STGs. For synthesis, it employs the state space of the STG, and so suffers from the combi-
natorialstate space explosionproblem. That is, even a relatively small STG may (and often does) yield
a very large state space. This puts practical bounds on the size of circuitsthat can be synthesised using
such techniques, which are often restrictive, especially if the specification is not constructed manually by
a designer but rather generated automatically from high-level hardwaredescriptions. (For example, de-
signing a circuit with more than 20–30 signals with PETRIFY is often impossible.) Hence, this approach
does not scale.

2In practical STGs, the designers intuitively avoid using dummy transitions insituations where their semantics would be am-
biguous. However, such situations do exist, in particular when firing a dummy transition can disable other transitions.
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To cope with the state space explosion problem, Chu suggested a nondeterministic method for de-
composing an STG into several smaller ones [Chu87], see also [KKT93].The idea is that all compo-
nents together can be synthesised faster than the original STG while the corresponding circuits perform
together in the same way as the circuit directly synthesised from the specification. There are strong re-
strictions on the structure and labelling of STGs in [Chu87]; the improved decomposition algorithm of
Vogler, Wollowski and Kangsah [VW02, VK06] works for arbitrary deterministic specifications; here,
we generalise this to output-determinate specifications.

Based on our theory, we develop a more efficient variant of the decomposition algorithm. In the de-
composition algorithm, each component is obtained from the original STG by hiding some of the signals
in it, and then removing the corresponding transitions by applying so-called reduction operations; the
most important of these transformations is the contraction ofλ-labelled transitions (cf. Definition 2.1).
The success of this algorithm depends on the ability tosecurely(i.e. in a behaviour-preserving way) con-
tract all such transitions. If this is not possible, the algorithm of [VK06] has tobacktrackand re-introduce
some of the signals into the component, even if they are not really needed forimplementation. In our
new version of the algorithm, one can leave such non-contracted hidden transitions in the component
and proceed with synthesising a component with fewer signals, which was obtained in a shorter time.
While previously the components were deterministic and correct by construction, our components can be
non-deterministic; to guarantee correctness, they have to be checked for output-determinacy in the end.
The correctness proof for our version is essentially language-based, and might be easier to grasp than
the bisimulation-based proofs in [VW02, VK06]. Furthermore, it is easier now to prove the validity of
the STG-transformations (like transition contraction) forming the heart of thedecomposition algorithm;
it should now also be easier to extend the set of valid transformations.

An alternative way to cope with the state space explosion problem is to usesyntax-directedtranslation
of the specification to a circuit, thus avoiding to build the state space. This is essentially the idea behind
BALSA [EB02] and TANGRAM [Ber93]. This technique, although computationally efficient, often yields
circuits with large area and performance overheads compared with synchronous counterparts. This is
because the resulting circuits are highly over-encoded, i.e. they contain many unnecessary state-holding
elements.

For asynchronous circuits to be competitive, one has somehow to combine the advantages of logic
synthesis (high quality of circuits) and syntax-directed translation (guarantee of a solution, efficiency)
while compensating for their disadvantages. A natural way of doing this isre-synthesis, i.e. one ap-
plies logic synthesis to the control path extracted from a BALSA specification. This control path can be
partitioned into smaller clusters which can be handled by logic synthesis, and the clusters on which it
fails (because of either inability to find a solution in the given gate library or exceeding memory or time
constraints) are implemented using the syntax-directed translation. The initial experiments conducted
in [CC06] showed that this combined approach can halve the area devotedto control flow and improve
its latency, compared with the traditional syntax-directed translation, as long as the size of clusters which
can be confidently handled by logic synthesis is sufficiently large.

The design flow advocated in [CC06] is as follows. Given a (potentially large) specification STG,
the encoding conflicts are resolved using an integer linear programming (ILP) technique to approxi-
mate the state space of an STG. Then the resulting STG (free from encodingconflicts) is decomposed
into smaller components in such a way that they are also free from encoding conflicts, as described
in [CC03]. (Typically, each component is responsible for producing a single signal.) Then these compo-
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nents are synthesised one-by-one using PETRIFY. This approach can handle much larger specifications
than PETRIFY alone, but its scalability is still limited since ILP is an NP-complete problem.

With our decomposition algorithm, we follow a more scalable approach, which tries to avoid per-
forming expensive operations (such as resolving encoding conflicts) on the original specification. Ob-
serve that our check for output-determinacy is also computationally hard, but it is performed on small
components; in contrast, in [CC06] the NP-complete ILP-problems are solved for the full specification.
The resulting components in our approach, unlike those in the technique described above, are generally
not free from encoding conflicts. If a component has an encoding conflict, it can happen due to one of
the following two reasons: (i) this conflict was present already in the original STG; or (ii) this conflict
was introduced because some of the signals preventing it in the original STGare not present in the com-
ponent. The technique described in [KS07] allows one to check which of these two reasons applies, and
in case (ii) to find signals which need to be added to the component to preventsuch encoding conflicts.
Finally, the remaining encoding conflicts are resolved in each component, and they are synthesised. Our
decomposition algorithm and all its variants are implemented in the tool DESIJ [Sch07].

The paper is organised as follows: in the next section we introduce the basic concepts of Petri nets
and STGs, including the reduction operations from [VK06]. In Section 3,the new notion of output-
determinacy is introduced and justified by showing that for output-determinateSTGs (and only for
them) an implementation relation can purely be based on the language; we also analyse the complex-
ity of checking output-determinacy. In the following section, we give an analogous result for the case
where the implementation is a parallel composition. Furthermore, we present thenew variant of the
STG decomposition algorithm together with a list of semantics-preserving transformations and prove its
correctness. We then give some first experimental results in Section 5, and generalise our theory to STGs
with internal signals in Section 6.

2. Basic Definitions

This section provides the basic notions for Petri nets and STGs, for a more detailed explanation cf.
e.g. [CKK+02].

2.1. Petri Nets and STGs

A Petri net is a 4-tupleN = (P, T,W,MN ) whereP is a finite set ofplacesandT is a finite set of
transitionswith P ∩ T = ∅, W : P × T ∪ T × P → N0 is theweight function,andMN is theinitial
marking, where amarking is a multiset of places, i.e. a functionP → N0 (also written asNP

0 ) which
assigns a number oftokensto each place. A Petri net can be considered as a bipartite graph with weighted
arcs between places and transitions. If necessary, we writePN etc. for the components ofN or P ′ (Pi)
etc. for the netN ′ (Ni) etc. Analogous conventions apply later on.

Thepresetof a place or transitionx is denoted as•x and defined by•x = {y ∈ P∪T |W (y, x) > 0},
thepostsetof x is denoted asx• and defined byx• = {y ∈ P ∪ T | W (x, y) > 0}. These notions are
extended to sets as usual. We say that there is anarc from eachy ∈ •x to x.

A transitiont is enabled under a marking Mif ∀p ∈ •t : M(p) ≥ W (p, t), which is denoted by
M [t〉. An enabled transitiont canfire or occuryielding a new markingM ′, written asM [t〉M ′, where
M ′(p) = M(p)−W (p, t)+W (t, p), for all p ∈ P . A transition sequencev = t1 . . . tn is enabled under
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Figure 3. An STG modelling a simplified VME bus controller (left) and its state graph with a CSC conflict
between the underlined states (right). The signal order in the binary encodings is:dsr, ldtack, dtack, lds, d.

a markingM (yielding M ′) if M [t1〉 M1[t2〉 . . . Mn−1[tn〉Mn = M ′, and we writeM [v〉, M [v〉M ′

resp.;v is calledfiring sequenceif MN [v〉. The empty transition sequenceλ is enabled under every
marking.M is calledreachableif a transition sequencev with MN [v〉M exists.

N is calledboundedif, for every reachable markingM and every placep, M(p) ≤ k for some
constantk ∈ N; if k = 1, N is calledsafe. N is bounded if and only if the set[MN 〉 of reachable
markings is finite. In this paper, we are mostly concerned with bounded Petrinets and STGs.

An STGis a tupleN = (P, T,W,MN , In,Out, l) where(P, T,W,MN ) is a Petri net andIn and
Out are disjoint sets ofinput andoutput signals. For Sig = In ∪ Out being the set of all signals,
l : T → Sig × {+,−} ∪ {λ} is thelabelling function.Sig × {+,−} or shortSig± is the set ofsignal
edgesor signal transitions; its elements are denoted ass+, s− resp. instead of(s,+), (s,−) resp. A plus
sign denotes that a signal value changes fromlogical low (written as 0) tological high (written as 1),
and a minus sign denotes the opposite direction. We writes± if it is not important or unknown which
direction takes place; if such a term appears more than once in the same context, it always denotes the
same direction. To keep the notation short, input/output signal edges are just called input/output edges.
Usually, the letters close to the beginning of the alphabet (a, b, c, . . .) denote input signals and those close
to the end of the alphabet (x, y, z) denote output signals.

An STG may initially contain transitions labelled withλ, calleddummytransitions, which do not
correspond to any signal change.Hiding a signals means to change the label of all transitions labelled
with s± to λ, andunhidingmeans to change the labels back to the initial values.

An example of an STG is shown in Fig. 3(left) (cf. [CKK+02]). Places are drawn as circles containing
a number of tokens corresponding to their marking. Unmarked places whichhave only one transition in
their presets and postsets are not drawn if the corresponding arcs have the weight 1; they are implicitly
given by an arc between these two transitions. Transitions are drawn as rectangles together with their
labelling (input transitions with a thick border), and the weight function is drawn as directed arcsxy
wheneverW (x, y) 6= 0 (and labelled withW (x, y) if W (x, y) > 1).
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We lift the notion of enabledness to transition labels: we writeM [l(t)〉〉M ′ if M [t〉M ′. This is ex-
tended to sequences as usual – deletingλ-labels automatically sinceλ is the empty word; i.e.M [s±〉〉M ′

means that a sequence of transitions fires, where one of them is labelleds± while the others (if any) are
λ-labelled. A sequencev ∈ (Sig±)∗ is called atrace of a markingM if M [v〉〉, and atrace of N if
M = MN . The language ofN is the set of all traces ofN ; it is denoted byL(N). An STG is called
consistentif for each signals the edgess+ ands− alternate in all traces, always beginning with the same
signal edge. Only from consistent STGs a circuit can be synthesised.

An STG has adynamic conflictif there are different transitionst1 andt2 such that for some reachable
markingM : M [t1〉 andM [t2〉, but∃p ∈ P : M(p) < W (p, t1) +W (p, t2). A dynamic conflict implies
astructural conflict, i.e. •t1 ∩

•t2 6= ∅. The conflict is called anauto-conflictif l(t1) = l(t2) 6= λ.

Simulations are a well-known important device for proving language inclusionor equivalence. A
simulation fromN1 to N2 is a relationS between markings ofN1 andN2 such that(MN1

,MN2
) ∈ S

and for all(M1,M2) ∈ S andM1[t〉M
′
1 there is someM ′

2 with M2[l1(t)〉〉M
′
2 and(M ′

1,M
′
2) ∈ S. If

such a simulation exists, thenN2 can go on simulating all signals ofN1 forever.
Often, nets are considered to have the same behaviour if they are language equivalent. Another, more

detailed behaviour equivalence is bisimulation. A relationB is abisimulationbetweenN1 andN2 if it
is a simulation fromN1 to N2 andB−1 is a simulation fromN2 to N1. If such a bisimulation exists, we
call the STGsbisimilar; intuitively, the STGs can work side by side such that in each stage each STG
can simulate the signals of the other.

Thereachability graphRGN of an STGN is an arc-labelled directed graph on the reachable mark-
ings withMN as root; there is an arc fromM to M ′ labelledl(t) wheneverM [t〉M ′. RGN can be seen
as a finite automaton (where all states are accepting), andL(N) is the language of this automaton. For
an example consider Fig. 3(right).N is deterministicif its reachability graph is a deterministic automa-
ton: it contains noλ-labelled transitions and there are no dynamic auto-conflicts, i.e. for each reachable
markingM and each signal edges± there is at most oneM ′ with M [s±〉〉M ′. Note that a deterministic
STG can have choices between different outputs. For example, an STG modelling a standard arbiter is
deterministic; see the discussion ofoutput-persistencyat the end of this section. For deterministic STGs,
language equivalence and bisimulation coincide.

If RGN is not deterministic, one can turn it (using well-known automata-theoretic methods) into
a language equivalent deterministic automaton with accepting states only; in particular, the resulting
automaton will have noλ-arcs. (Note that this version of a deterministic automaton is in general not
complete.) We call this transformationdeterminisationand denote the resulting deterministic finite au-
tomaton byDA(N). Observe that automata with accepting states only can be regarded as STGs(with
the states as places, the initial state being the only marked place, etc.); hence,all definitions for STGs
also apply to automata.

In the following definition ofparallel composition‖, we will have to consider the distinction between
input and output signals. The idea of parallel composition is that the composedsystems run in parallel
and synchronise on common signals – corresponding to circuits that are connected on the wires corre-
sponding to the signals. Since a system controls its outputs, we cannot allow asignal to be an output
of more than one component; input signals, on the other hand, can be shared. An output signal of a
component may be an input of other components, and in any case it is an output of the composition.

The parallel composition of STGsN1 andN2 is defined ifOut1 ∩ Out2 = ∅. If we drop this
requirement, the definition gives thesynchronous productN1 × N2, which will be technically useful.
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Figure 4. Parallel composition example. In the net fragmenton the left hand side, signala is an output, and in the
fragment in the middle it is an input. Hence, in their parallel composition (right) it is an output. In this example,
there iscomputation interference: the left component activates ana+ but the middle one is not ready to receive it.
This problem is not visible in the parallel composition; seeDefinition 4.1.

The place set of the composition is the disjoint union of the place sets of the components; therefore, we
can consider markings of the composition (regarded as multisets) as the disjoint union of markings of
the components, and we will also write such a markingM1∪̇M2 of the composition as(M1,M2). To
define the transitions, letA = (In1 ∪ Out1) ∩ (In2 ∪ Out2) be the set of common signals. If e.g.s
is an output ofN1 and an input ofN2, then an occurrence of an edges± in N1 is ‘seen’ byN2, i.e. it
must be accompanied by an occurrence ofs± in N2. Since we do not know a priori whichs±-labelled
transition ofN2 will occur together with somes±-labelled transition ofN1, we have to allow for each
possible pairing. Thus, theparallel compositionN = N1 ‖ N2 is obtained from the disjoint union of
N1 andN2 by fusing eachs±-labelled transitiont1 of N1 with eachs±-labelled transitiont2 from N2

if s ∈ A. Such transitions are pairs and the firing(M1,M2)[(t1, t2)〉(M
′
1,M

′
2) of N corresponds to the

firingsMi[ti〉M
′
i in Ni, i = 1, 2; for an example of a parallel composition, see Fig. 4. More generally,

we have(M1,M2)[w〉〉(M
′
1,M

′
2) iff Mi[w|Ni

〉〉M ′
i for i ∈ {1, 2}, wherew|Ni

denotes the projection of
the tracew onto the signals of the STGNi. Hence, all reachable markings ofN have the form(M1,M2),
whereMi is a reachable marking ofNi, i = 1, 2.

A composition can also be ill-defined due to what e.g. Ebergen [Ebe92] callscomputation interfer-
ence(see Fig. 4); this is a semantic problem, and we will not consider it here, butlater in the definition
of correctness.

It is easy to see thatN is deterministic ifN1 andN2 are. However, as illustrated in Fig. 4,N might
have structural auto-conflicts even if none of theNi has them.

Obviously, we can define the parallel composition of a finite family (or collection) (Ci)i∈I of STGs
as‖i∈I Ci, provided that no signal is an output signal of more than one of theCi. We will also denote
the markings of such a composition by(M1, . . . ,Mn) if Mi is a marking ofCi for i ∈ I = {1, ..., n}.
As above,(M1,M2, . . . ,Mn)[w〉〉(M

′
1,M

′
2, . . . ,M

′
n) iff Mi[w|Ci

〉〉M ′
i for all i ∈ {1, . . . , n}.
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We now introduce transition contraction (see e.g. [And83] for an early reference), which is the most
importantreduction operationof our decomposition procedure. We essentially repeat from [VK06],
where further discussions can be found. Intuitively, a transition contraction removes the respective tran-
sition from the net and combines each place of the preset with each place ofthe postset to ‘simulate’
the firing of the deleted transition. In this definition,⋆ 6∈ P ∪ T is a pseudo element used for notational
convenience to have only pairs of places. We assumeW (⋆, t1) = W (t1, ⋆) = MN (⋆) = 0.

Definition 2.1. (Transition Contraction)
Let N be an STG andt ∈ T with l(t) = λ, •t ∩ t• = ∅ andW (p, t),W (t, p) ≤ 1 for all p ∈ P . We
define thet-contractionN of N by

P = {(p, ⋆) | p ∈ P − (•t ∪ t•)} ∪ {(p, p′) | p ∈ •t, p′ ∈ t•}

T = T − {t}

W ((p, p′), t1) = W (p, t1) +W (p′, t1)

W (t1, (p, p
′)) = W (t1, p) +W (t1, p

′)

l = l T

MN ((p, p′)) = MN (p) +MN (p′)

In = In Out = Out

We say that the markingsM of N andM of N satisfy themarking equalityif for all (p, p′) ∈ P

M((p, p′)) = M(p) +M(p′).

For two different transitionst1, t2 with t1 6= t 6= t2, we call the unordered pair{t1, t2} a new conflict
pair whenever•t ∩ •t1 6= ∅ andt• ∩ •t2 6= ∅ in N (or vice versa); ifl(t1) = l(t2) 6= λ, we speak of a
new structural auto-conflict.

A transition contraction is calledsecureif either (•t)• ⊆ {t} (type-1 secure), or •(t•) = {t} and
MN (p) = 0 for somep ∈ t• (type-2 secure). 3

Intuitively, for a type-1 secure contraction, there is no conflict in the preset of t, and for a type-2
secure contraction, essentially there is no merging in the postset oft. Note that, in general,N might fail
to be consistent, even ifN is; but secure contractions preserve consistency [VK06].

Fig. 5 (top) shows a part of a net and the result of contracting theλ-transition. In many cases,
the preset or the postset of the contracted transition has only one element, and then the result of the
contraction looks much easier as e.g. in Fig. 5 (bottom). Here, theb−- and thec+-labelled transition
form a new conflict pair; note that this is also true, if they already had a common place (not drawn) in
their presets inN – they now have a new such place.

The following theorem of [VK06] and the succeeding corollary of its second part show in which
sense secure transition contractions are behaviour-preserving. These results are used in Section 4.
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Theorem 2.2. LetN be a secure contraction ofN .

1. If the contraction is of type 1, thenN andN are bisimilar.

2. If the contraction is of type 2, thenS = {(M,M) | M andM satisfy the marking equality} is a
simulation fromN to N , and there is a simulationS ′ ⊆ S−1 fromN toN .

3. N andN are language equivalent. 3

Corollary 2.3. If N is a type-2 secure contraction ofN , then the simulationS ′ in Theorem 2.2 is aready
simulationfrom N to N , i.e. a simulation where(M,M) ∈ S ′ impliesM [s±〉〉 if and only if M [s±〉〉,
for all signalss. 3

We conclude this section by introducing redundant transitions and places;the deletion of such a
transition, place resp., (including the incident arcs) is another transformation that is used in our decom-
position algorithm.

A transitiont is redundantif either it is aλ-transition withW (p, t) = W (t, p) for each placep (i.e. t
is aloop-onlytransition), or there is another transitiont′ with the same label such thatW (p, t) = W (p, t′)
andW (t, p) = W (t′, p) for each placep (i.e. t is aduplicatetransition).

A placep is implicit if it can be deleted from the net without changing the set of firing sequences.
However, detecting implicit places isPSPACE-complete already for safe nets, and during decomposition
only redundant places[Ber87] are deleted. Redundant places are a subset of implicit ones, and they are
defined on the structure of the net; there are efficient linear programming techniques to find them. The
details of the definition are not relevant for this paper, see e.g. [VK06].

Proposition 2.4. If N ′ is obtained from an STGN by deleting a redundant transition or place, thenN
andN ′ are bisimilar. 3

2.2. STGs and Asynchronous Circuits

STGs are widely used for specifying the behaviour ofasynchronous circuits. Such a circuit has input
signals, which are controlled by the environment, and output signals, whose values are changed by the
circuit. The STG describes which output signals should be performed andwhich input signals the envi-
ronment is allowed to produce; cf. Subsection 3.1. We now explain the important concept ofcomplete
state coding (CSC).

For an STGN , a state vectoris a functionsv : Sig → {0, 1} where ‘0’ means logical low and
‘1’ logical high. A state assignmentassigns a state vectorsvM to each markingM of RGN . A state
assignment must satisfy for every signalx ∈ Sig and every pair of markingsM,M ′ ∈ [MN 〉 the
following properties:

M [x+〉〉M ′ impliessvM (x) = 0, svM ′(x) = 1

M [x−〉〉M ′ impliessvM (x) = 1, svM ′(x) = 0

M [y±〉〉M ′ for y 6= x impliessvM (x) = svM ′(x)

M [λ〉〉M ′ impliessvM = svM ′
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If such an assignment exists, it is uniquely defined by these properties3, and the reachability graph
and the underlying STG areconsistent. From aninconsistentSTG, one cannot synthesise a circuit.
Fig. 3(right) shows the reachability graph of the STG in Fig. 3(left); everyreachable marking is annotated
with its state vector.

If there is a state assignment,N hasComplete State Coding (CSC)if any two reachable markingsM1

andM2 with the same state vector (i.e.svM1
= svM2

) enable the same output signals, i.e.M1[x
±〉〉 iff

M2[x
±〉〉 for each output signalx. Otherwise,N has aCSC conflict, cf. e.g. Fig. 3(right), and no circuit

can be synthesised directly. In such a case, one tries to achieve it by the insertion ofinternal signals, i.e.
outputs which are considered to be unknown to the environment, without changing the external behaviour
of the STG; cf. Section 6 for a detailed discussion of internal signals.

Another important properties of STGs and asynchronous circuits which has to be fulfilled to permit
synthesis isoutput-persistency. An STG is output-persistent if every activated output edge will eventually
happen, i.e. enabled outputs cannot be disabled. However, inputs may bein conflict with other inputs.
It should be noted that some circuits, like arbiters, can handle a choice between outputs in a speed-
independent way with the help of analog circuitry allowing to resolve the arising meta-stability. In
practice, to synthesise such circuits, the arbitration is ‘factored out’ to the environment, so that the choice
between outputs is transformed into the choice between inputs, making the STG output-persistent; then
a standard arbiter is used in the final implementation.

3. Output-Determinacy

In this section, we define in a natural way when a deterministic STG can be regarded as a correct im-
plementation of a specification STGN ; we only consider deterministic implementations here, since the
final implementation ofN will be a circuit, which is deterministic by nature. Considering the case that
the specification may be non-deterministic, we introduce the concept ofoutput-determinacy, which is a
relaxation of determinism. It turns out that output-determinate STGs are exactly the STGs which have
correct implementations according to our notion. Hence, if an STG is not output-determinate, it is ill-
formed and cannot be correctly implemented by a circuit. This shows that thelanguage is not a satisfac-
tory semantics of non-deterministic STGsin general; in particular, if an STG isnot output-determinate,
then synthesising its determinised state graph will either fail or result in an incorrect circuit.

For the class of output-determinate STGs we show that their language is an adequate semantics,
and reformulate the notion of correct implementation purely in terms of the language. This notion is a
pre-congruence for parallel composition, and this plays an important roleas part of the invariant in the
proof of correctness of our STG decomposition algorithm described in Section 4, which we view as an
important application of the developed theory. Moreover, we introduce a set of semantics-preserving
STG transformations, which are, in particular, used in our decomposition algorithm. This set can easily
be extended since the definition of semantics-preserving is simple. To illustratethis, in Section 4 we
introduce new transformations, which were not used in decomposition algorithms so far.

Finally, we analyse the computational complexity of checking whether a givenSTG is output-
determinate for several classes of STGs, and describe a practical wayof checking it in the case of a
divergence-free safe or bounded STG.

3At least for every signals ∈ Sig which actually occurs, i.e.M [s±〉〉 for some reachable markingM .
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3.1. Correct implementations

An STGN specifies the behaviour of a system in the sense that the system must provideall and onlythe
specified outputs and that it must allowat leastthe specified inputs. As a consequence, the system must
be able to perform at least all traces ofN . In fact,N also describes assumptions about the environment
the system will interact with; namely, the environment will only produce the inputs specified byN .
A correct implementation ofN may allow additional input events (and traces), but these events and
subsequent behaviour will never occur in the envisaged environment. In other words, when the system is
running in a proper environment, only traces ofN can occur.

The implementation may actually have fewer input signals thanN , keeping only those that are rele-
vant for producing the required outputs. In this case, the environment may provide irrelevant inputs, but
the implementation simply ignores them — and in this sense, they are always allowed(e.g. in the STG
in Fig. 2, inputsa andb are irrelevant for producingx and can be ignored).

The following definition assumes a deterministic implementation (as it is the case in circuit design),
but the specification can be non-deterministic. The projection of a tracew of N onto the signals ofC,
obtained by deleting all signal edges where the signal belongs toInN \ InC , is denoted byw C .

Definition 3.1. (Correct Implementation)
A deterministic STGC is acorrect implementationof an STGN if InC ⊆ InN , OutC = OutN , and
for all w and allM such thatMN [w〉〉M the following hold:

(C1) w C is a trace ofC, i.e.MC [w C〉〉M
′ for some markingM ′ of C (note thatM ′ is unique asC is

deterministic);

(C2) If a ∈ InN andM [a±〉〉, then eitherM ′[a±〉〉 or a 6∈ InC ;

(C3) If x ∈ OutN , thenM [x±〉〉 iff M ′[x±〉〉. 3

This definition is a formalisation of the considerations above: the implementation must be able to perform
all traces of the specification, maybe dropping some irrelevant input signals (C1); all the inputs allowed
by the specification must be allowed (or ignored) by the implementation (C2); and the implementation
must produce exactly the specified outputs (C3). In particular, every deterministic STGN is a correct
implementation of itself.

3.2. The Notion of Output-Determinacy

A non-deterministic specification can perform the same trace in two differentways, reaching different
statesM1 andM2. In the speed-independent context the only information available to the circuit is the
execution history, i.e. the trace performed,4 and so an implementation cannot know whether its current
state corresponds toM1 or M2. Hence, a deterministic implementation must behave consistently with
the specificationno matter in which of these markings it is.

Our definition of correctness requires that the implementation must provideexactlythe outputs en-
abled byM1 andexactlythe outputs enabled byM2. This is only possible ifM1 andM2 enable the
same outputs. In contrast, the implementation must allowat leastthe inputs enabled underM1 andat

4In a non-speed-independent context some additional information such as timing of events may help to resolve non-
determinism.
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Figure 6. Non-output-persistency due to determinisation.An output-persistent but not output-determinate
STG (left) and the non-output-persistent STG (due to the choice between the outputsx and y) obtained from
it by determinisation (right). Note that determinisation can also result in a choice between an input and an output
(this would be the case ify were an input).
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Figure 7. Incorrect determinisation: the STG on the left is not output-determinate; the result of determinisation
is shown on the right. The latter STG, though implementable,is not a correct implementation of the original
specification: it can cause a failure in the environment by producingx when the environment does not expect it.

leastthe inputs enabled underM2; this is very well possible even if these sets of inputs differ – i.e. the
implementation may allow the union of these sets or any of its supersets. This observation leads to our
central notion of output-determinacy.

Definition 3.2. (Output-Determinacy)
An STGN is calledoutput-determinateif MN [w〉〉M1 andMN [w〉〉M2 implies for everyx ∈ OutN
thatM1[x

±〉〉 iff M2[x
±〉〉. 3

For example, the non-deterministic STG in Fig. 2(right) is output-determinate. Clearly, a deterministic
STG is always output-determinate; note also that – in contrast to a deterministic STG – an output-
determinate STG may containλ-transitions.

3.3. Semantics of Non-Deterministic Specifications

Now we demonstrate that the notion of output-determinacy is useful for defining a semantics of non-de-
terministic specifications (in particular, allowingλ-transitions), and we also justify this semantics.

First of all, the näıve approach consisting in determinisation of a non-deterministic specification us-
ing the usual procedure for finite automata and then proceeding with the synthesis is not always correct.
In the context of STGs and circuit synthesis, the result of determinisation can manifest some problems,
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e.g. non-output-persistency, as illustrated in Fig. 6; Fig. 7 illustrates a much more dangerous scenario,
where the determinised STG contains no apparent problems but the resultingcircuit is incorrect accord-
ing to Definition 3.1. In both cases, it is wiser to inform the designer of an error than to determinise
and synthesise such a specification. Below we show that determinisation canbe safe only for output-
determinate specifications.

Semantic Rule 1. If a specification of a speed-independent system is not output-deter-
minate, it cannot be implemented deterministically and thus is ill-formed.

This rule can be justified by the following result.

Proposition 3.3. Let C be a correct implementation ofN ; in particular,C is deterministic. ThenN is
output-determinate. 3

Proof:
For the sake of contradiction, suppose thatN has a tracew and two reachable markings,M1 andM2,
such that for somex ∈ OutN , MN [w〉〉M1[x

±〉〉, andMN [w〉〉M2 and¬M2[x
±〉〉. Then, by (C1) of

Definition 3.1,w|C is a trace ofC; moreover, sinceC is deterministic, it has a unique reachable marking
M ′ such thatMC [w|C〉〉M

′. Now, by (C3) of Definition 3.1,M ′[x±〉〉 due toM1[x
±〉〉, and, on the other

hand,¬M ′[x±〉〉 due to¬M2[x
±〉〉, a contradiction. ⊓⊔

Observe also that an STG always has CSC conflicts if it is not output-determinate, since, according
to Definition 3.2, any violation of output-determinacy implies the presence of two states which can be
reached by the same trace (and thus have the same encoding) and enable different sets of outputs. In
Section 6 it is shown that such a CSC conflict isirreducible[KKTV94], i.e. it cannot be resolved by the
insertion ofinternal signalsinto the STG (as performed e.g. by PETRIFY or MPSAT) in such a way that
its ‘external’ behaviour does not change. The STG resulting from suchan insertion will always have a
violation of output-determinacy (and thus CSC conflicts) again.

On the other hand, output-determinate specifications can safely be determinised, and so there is no
reason to distinguish between the specification itself and its determinised form:

Semantic Rule 2.The semantics of an output-determinate specification of a speed-
independent system is its (prefix-closed) language.

This rule can be justified by the following result.

Proposition 3.4. Let N be an output-determinate STG andC be the deterministic automatonDA(N)
obtained by determinisation of the reachability graph ofN . ThenC is a correct implementation ofN . 3

Proof:
The determinisation does not change the language; hence,MN [w〉〉M [s±〉〉 (w ∈ (Sig±N )∗, s ∈ SigN )
implies directlyMC [w〉〉M

′[s±〉〉. This proves (C1), (C2) and the ‘⇒’ part of (C3).
To show the ‘⇐’ part of (C3), assumeM ′[x±〉〉 (x ∈ OutN ). This impliesMN [w〉〉M ′′[x±〉〉 for

some markingM ′′, as otherwise the language is not preserved. SinceN is output-determinate, also
M [x±〉〉. ⊓⊔
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Figure 8. Determinisation: an output-determinate STGN with a deadlock (left) and the deadlock-free STG
obtained fromN by determinisation (right). The latter STG is a correct implementation ofN ; intuitively, the
execution ofx− is correct, since it only occurs when the environment signalled with a− that the system is in the
‘lower’ branch ofN . The circuit[x] = a implements either of these two STGs.

The proposed semantics has interesting consequences, in particular, a specification with deadlocks
can have a deadlock-free implementation, as illustrated in Fig. 8. Hence, arbitrary language-preserving
transformations of output-determinate specifications are allowed, as long asthe resulting STG is still
output-determinate. That is,there is no need to preserve stronger equivalences such as bisimulation.In
fact, in Section 4.2 we relax these requirements even further.

In view of Semantic Rule 2, one would expect that the notion of correct implementation given in Defi-
nition 3.1 can be reformulatedpurely in terms of the languageif the specification and the implementation
are known to be output-determinate. In fact, we generalise the definition to allow a non-deterministic
implementation, as long as it is output-determinate.

Definition 3.5. (Trace-Correct Implementation)
An output-determinate STGC is a trace-correct implementationof an output-determinate STGN if
InC ⊆ InN , OutC = OutN , and for every tracew of N the following hold:

(TC1) w C is a trace ofC;

(TC2) If w Cx
± is a trace ofC for somex ∈ OutC , thenwx± is a trace ofN . 3

This definition can be viewed as adenotationalnotion of correctness, as opposed to theoperational
one given in Definition 3.1. However, it should be emphasised that this notionexplicitly requires the
specification to be output-determinate (i.e. this purely trace-based view is unable to distinguish whether
a specification is output-determinate or not). The result below shows that thisnotion is equivalent to
Definition 3.1 if the implementation is deterministic.

Proposition 3.6. (Justification of the notion of trace-correct implementation)
Let N be an STG andC be a deterministic STG such thatInC ⊆ InN andOutC = OutN . ThenC is a
correct implementation ofN iff it is a trace-correct implementation ofN , andN is output-determinate
in this case. 3

We postpone the proof of this result until the next section, where it is formulated and proven for the more
general case of a distributed implementationC = ‖i∈ICi. (Note thatC in the above result can be seen
as being a distributed implementation comprised of a single component.)
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3.4. Checking Output-Determinacy

In this section, we analyse the complexity of checking output-determinacy forseveral classes of STGs
and propose a practical test for the cases of safe or bounded divergence-free STGs.

The coverability problem is the problem of deciding whether a given Petri net or an STG has a
reachable markingM coveringa given markingM ′ (i.e. M ≥ M ′). The complementary problem
will be called theuncoverabilityproblem. A special case of the (un)coverability problem is thesin-
gle-place (un)coverability,where|M ′| = 1. The computational complexity of this problem for various
Petri net classes is well-understood [Esp98], namely it isPSPACE-complete for safe and bounded, and
EXPSPACE-complete for unbounded nets.

We now show that the (un)coverability problem on a Petri net can be reduced to the (un)coverability
problem on a consistent output-persistent and output-determinate STG without dummies, which belongs
to the same class (safe/bounded/unbounded) as the original Petri net. The main idea of the reduction is
to split each transitiont of the Petri net into four STG transitions,a+t , x+t , a−t andx−t , whereat is a new
input andxt is a new output, as illustrated below:

t =⇒ a
+

t
x

+

t
a
−

t
x
−

t

One can easily show that the size of the resulting STG is linear in the size of the original Petri net, and that
this STG contains no dummies, is output-determinate (in fact, deterministic), output-persistent (since no
two different output transitions have overlapping presets) and consistent (the place in the feedback with
a token on it prevents self-concurrent execution of transitions; note that this arc is not necessary if the
original Petri net is safe).5 Moreover, all the places of the original net are also places of this STG, and
they are not in the preset of an output transition; any markingM of the original Petri net is (un)coverable
iff M is (un)coverable in the STG, i.e. the (un)coverability problem on a Petri net is reducible to the
corresponding problem on this STG.

We proceed by showing that the single-place uncoverability problem on such an STG can be reduced
to checking output-determinacy (of a modified STG); this reduction forms the basis of our lower com-
plexity bounds analysis. Given an STG with a placep that is not in the preset of an output transition, we
attach the following net fragment top, wherea is a new input andx is a new output:

q

p ?

a
+

a
+

x
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Note that the obtained STG contains no dummies and is still consistent (since the new placeq pre-
vents the new transitions from firing more than once), output-persistent and belongs to the same class
(safe/bounded/unbounded) as the original Petri net. Moreover, this STG is output-determinate iffp is
uncoverable. In effect, we have proved the following result.
5In fact, this STG is implementable by the circuit[xt] = at, for all t.
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/* execute a sequenceσ of transitions without remembering it, */

/* non-deterministically choosing each of its steps */

choose σ such that MN×N [σ〉(M1,M2)

/* non-deterministically choose an output transition */

if ∀t ∈ TN×N : l(t) /∈ Out then loop forever

choose t ∈ TN×N such that l(t) ∈ Out

/* check enabledness for violation of non-output-determinacy */

if ¬M1[t〉 then loop forever

if ¬M2[l(t)〉〉 then accept else loop forever

Figure 9. Algorithm checking for violation of output-determinacy.

Proposition 3.7. LetN be a safe/bounded/unbounded Petri net andp be one of its places. Then one can
build a, respectively, safe/bounded/unbounded, consistent and output-persistent STGN ′ which contains
no dummy transitions and whose size is linear in the size ofN , such thatN ′ is output-determinate iffp
is uncoverable inN . 3

Corollary 3.8. The problem of checking output-determinacy isPSPACE-hard for safe and for bounded
STGs andEXPSPACE-hard for unbounded STGs. Moreover, these complexity bounds remainthe same
even if the STG contains no dummy transitions and is known to be consistent andoutput-persistent. 3

Proof:
Follows from Proposition 3.7, the corresponding complexity results for the single-place coverability
problem in [Esp98] and the fact that the space classes are closed w.r.t. complementation. ⊓⊔

We complete our analysis by giving tight upper bounds for the problem of checking output-determinacy
for the cases of safe and bounded STGs. The basis for this is the non-deterministic algorithm in Fig. 9
for checking whether a net is not output-determinate.

Given an STGN , the algorithm builds the synchronous productN × N and analyses its reachable
markings. One can observe that in order to show thatN is not output-determinate it is enough to demon-
strate the existence of a reachable marking(M1,M2) of N × N such thatM1[x

±〉〉 ∧ ¬M2[x
±〉〉, for

some outputx. In fact, this condition can be simplified, without loss of generality, by replacingM1[x
±〉〉

by ∃t : M1[t〉 ∧ l(t) = x±. Using this observation, one can easily show the correctness of this algo-
rithm. Indeed, if it acceptsN thenN is not output-determinate; moreover, every non-output-determinate
STGN can be accepted if the algorithm makes a proper sequence of choices (exploiting the power of
non-determinism).

Note that for safe and bounded STGs, the memory requirement of this algorithm is only polynomial
in the size ofN ; in particular, one can decide whetherM2[l(t)〉〉 at the last step of the algorithm by
performing a number of marking coverability tests linear in the size ofN (one for eachl(t)-labelled
transition), where each test can be decided inPSPACE for safe and bounded STGs [Esp98]. Since the
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deterministic and non-deterministic versions ofPSPACE coincide and the space classes are closed w.r.t.
complementation, the following holds.

Proposition 3.9.
Output-determinacy can be decided inPSPACE for safe and for bounded STGs. 3

Combined with Corollary 3.8, this result means that the problem of checking output-determinacy is
PSPACE-complete for safe and bounded STGs, and the complexity remains the same if the STG con-
tains no dummies and is known to be consistent and output-persistent. However, the algorithm above
cannot be used to claim that output-determinacy can be decided inEXPSPACE for unbounded STGs,
even though the property¬M2[l(t)〉〉 at the last step of the algorithm can be decided inEXPSPACE in
this case. The reason is that the amount of memory consumed by the algorithm can become arbitrarily
large due to the need to keep the current marking ofN × N , whose size is unbounded. Hence, in this
paper we leave the question about the upper complexity bound for the caseof unbounded STGs open.
(This case is not very interesting from the practical point of view anyway.)

Though the above algorithm is adequate for proving the theoretical uppercomplexity bounds, it may
be non-trivial to efficiently implement it in practice. Therefore, we propose a much simpler approach
for the practically important case of a safe or boundeddivergence-freeSTG, i.e. an STG which cannot
execute an infinite sequence ofλ-transitions from any of its reachable markings.6 One can observe that
in such a case the conditionM1[x

±〉〉 ∧ ¬M2[x
±〉〉 can be simplified further to(∃t : M1[t〉 ∧ l(t) =

x±) ∧ ¬(∃t : M2[t〉 ∧ l(t) ∈ {x±, λ}). The latter can be reduced to a number of coverability tests
(by introducing complementary places) that is polynomial in the size ofN , or checked directly using,
e.g. the unfolding-based theory developed in [Kho03,Mel98].

4. Decomposition into Output-Determinate Components

In this section, we describe how the developed theory of output-determinacy can be applied to derive
an algorithm for decomposition of STGs into smaller components. First, we consider distributed imple-
mentations,i.e. implementations which can be represented as a parallel composition of STGs,and derive
a correctness condition for such implementations, which is consistent with the ones developed in the
previous section. Then we describe our decomposition algorithm and formally prove its correctness.

4.1. Correct Decompositions

In this section, implementations consisting of a family ofcomponents(Ci)i∈I are considered. Recall that
we assume all STGs to be bounded; this is preserved by all the transformations described in this paper.
For each of theCi, synthesis is performed separately and the resulting circuits are simply connected with
wires for their common signals. Clearly, an output must be produced by onlyone component. On the
other hand, several components can listen to the same signal, produced bythe environment or another
component. On the level of STGs, this is captured by theparallel compositionof the (Ci)i∈I . We first
generalise Definition 3.1 to families of components, additionally taking care ofcomputation interference
as explained below.

6A practical sufficient condition for divergence-freeness can be obtained using T-invariants [Mur89].
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Definition 4.1. (Correct Decomposition)
LetN be an STG andC = ‖i∈ICi be a parallel composition of deterministic components. Then(Ci)i∈I
is acorrect distributed implementation(or acorrect decomposition) of N , if C is a correct implementa-
tion ofN (cf. Definition 3.1) and the following holds:

(C4) If w is a trace ofN , MC [w C〉〉(Mi)i∈I for some marking(Mi)i∈I of C, andMj [x
±〉〉 for some

j ∈ I andx ∈ Outj , then(Mi)i∈I [x
±〉〉 (nocomputation interference).

Here, and whenever we have a collection(Ci)i∈I in the following,Outi stands forOutCi
etc. 3

Thus, computation interference occurs if some component produces an output which is not expected
by the other components. In reality, this output is produced anyway, leading to a malfunction of the sys-
tem. But on the level of STGs, in the parallel composition of the components, thisoutput will be disabled
instead, i.e. the problem becomes hidden, as illustrated in Figure 4. Since ourdecomposition algorithm
is correct, it ensures (C4), and such unexpected outputs do not occur in the components produced by it.

Since computation interference is a semantical notion, we have not considered it in the definition
of parallel composition, where we only required the syntactic condition that the output sets are disjoint.
In fact, it is not possible to treat computation interference in the definition of parallel composition for
the following subtle reason: (C4) only forbids computation interference in states that can really occur
in appropriate environments, i.e. when performing a trace ofN (modulo the irrelevant inputs). In fact,
our decomposition algorithm frequently produces components which show computation interference in
other reachable markings. In short, (C4) is violated if and only if malfunctionon the physical level can
occur while the components work in an appropriate environment.

Observe that Definition 4.1 is a generalisation of Definition 3.1: if(Ci)i∈I consists of only one com-
ponentC1, thenC = C1, no computation interference can occur, and (C4) trivially holds. Furthermore,
in [VW02,VK06] a correctness definition in a bisimulation style was presentedfor deterministicN and
applied in the context of decomposition; this definition is easily seen to be equivalent to Definition 4.1
for generalN .

Analogously to the notion of correct implementation, the notion of correct distributed implementation
can be reformulated purely in terms of the language, if the specification and the distributed implementa-
tion are known to be output-determinate.

Definition 4.2. (Trace-Correct Distributed Implementation)
Let N and(Ci)i∈I be output-determinate STGs. Then(Ci)i∈I is a trace-correct distributed implemen-
tation (or trace-correct decomposition) of N , if for C = ‖i∈ICi (TC1) and (TC2) of Definition 3.5 hold
and for every tracew of N the following holds:

(TC3) If w Cj
x± is a trace ofCj for somex ∈ Outj , thenw Cx

± is a trace ofC (no computational
interference). 3

This definition can be viewed as adenotationalnotion of correctness, as opposed to theoperational
one given in Definition 4.1. The result below shows that this notion is equivalent to Definition 4.1, if
the implementation is deterministic and the specification is output-determinate. Clearly,Definition 3.5
is a special case of this definition, and Proposition 3.6 is obtained as a special case of this theorem by
consideringI = {1} andC = C1.
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Note that we require theCi to be output-determinate, but we do not have to require this forC to get
a sensible trace-based definition. This is also adequate, because circuitswill be synthesised from theCi

(and thesecircuitsare composed whileC does not have to be built).

Theorem 4.3. (Justification of the notion of trace-correct distributed implementation)
LetN be an STG andC = ‖i∈ICi be a parallel composition of deterministic STGs such thatInC ⊆ InN

andOutC = OutN . Then(Ci)i∈I is a correct distributed implementation ofN iff it is a trace-correct
distributed implementation ofN , and in this caseN is output-determinate. 3

Proof:
N is output-determinate by Proposition 3.3. First we prove that, if(Ci)i∈I is a correct distributed im-
plementation ofN , then it is also a trace-correct distributed implementation ofN . We consider each
requirement of Definition 4.2 in turn, and show that they follow from Definition4.1.

(TC1) Coincides with (C1). So, letw be a trace ofN , i.e. MN [w〉〉M for some reachable markingM
of N , andMC [w C〉〉(Mi)i∈I for some marking(Mi)i∈I of C.

(TC2) Since all the components are deterministic, the marking(Mi)i∈I is uniquely determined byw C ,
and thus for anyx ∈ OutN : if w Cx

± is a trace ofC, then(Mi)i∈I [x
±〉〉 andwx± is a trace of

N by (C3).

(TC3) Suppose now thatx ∈ Outj andw Cj
x± is a trace ofCj for somej ∈ I. SinceCj is determin-

istic,Mj is uniquely determined byw Cj
, and thusMj [x

±〉〉. Therefore, by (C4),(Mi)i∈I [x
±〉〉

andw Cx
± is a trace ofC.

Now we show that, ifC is a trace-correct distributed implementation ofN , then it is also a correct one.
We consider each requirement in Definition 4.1 in turn, and show that it follows from Definition 4.2.

(C1) Coincides with (TC1). So, letMN [w〉〉M for a markingM of N , andMC [w C〉〉(Mi)i∈I .

(C2) Leta ∈ InN be such thatM [a±〉〉. Sincewa± is a trace ofN , wa± C is a trace ofC by (TC1),
i.e. eithera /∈ InC or (Mi)i∈I [a

±〉〉, as(Mi)i∈I is uniquely defined byw C due to the determinism
of C.

(C3) ⇒ Similar to the case for (C2).

⇐ Suppose(Mi)i∈I [x
±〉〉. Thenwx± is a trace ofN by (TC2), i.e.MN [w〉〉M ′[x±〉〉 for some

reachable markingM ′ of N , and soM [x±〉〉 due to the output-determinacy ofN .

(C4) Supposex ∈ Outj andMj [x
±〉〉 for somej ∈ I. Thenw Cx

± is a trace ofC by (TC3). SinceC
is deterministic, the marking(Mi)i∈I is uniquely determined, and thus(Mi)i∈I [x

±〉〉.
⊓⊔

The next theorem shows that trace-correctness can be appliedhierarchically, i.e. given a trace-correct
distributed implementation, any of its components can in turn be replaced with its owntrace-correct
distributed implementation. A similar theorem for the bisimulation style correctness ofarbitrary STGs
can be found in [SV05].
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Theorem 4.4. (Hierarchical Trace-Correct Decomposition)
Let (Ci)i∈I be a trace-correct decomposition ofN , and for somei′ ∈ I let (Cj)j∈J be a trace-correct
distributed implementation ofCi′ , whereI ∩ J = ∅. Then(Ck)k∈K is a trace-correct decomposition of
N , whereK = (I \ {i′}) ∪ J . 3

Proof:
Clearly, the components(Ck)k∈K are all output-determinate. We defineC = ||i∈ICi, C ′ = ||j∈JCj and
C ′′ = ||k∈KCk. ProvingInC′′ ⊆ InN andOutC′′ = OutN is comparatively simple but a bit tedious;
a proof can be found in [SV05]. To simplify the notion, e.g. (TC1/C) denotes applying (TC1) for the
parallel compositionC, and instead ofw|Ci

we will just writew|i. Also, we treat (TC3) before (TC2).
Now letw ∈ L(N).

(TC1) (TC1/C) impliesw|C ∈ L(C) and therefore∀i ∈ I : w|i ∈ L(Ci). In particular,w|i′ ∈ L(Ci′).
Then, by (TC1/C ′), w|C′ ∈ L(C ′) and therefore∀j ∈ J : w|j ∈ L(Cj). Together,∀k ∈ K :
w|k ∈ L(Ck), and hencew|C′′ ∈ L(C ′′).

(TC3) w|kx
± ∈ L(Ck) for k ∈ K andx ∈ Outk. We consider the following two cases.

k 6∈ J Then, (TC3/C) impliesw|Cx± ∈ L(C), and by (TC2/C) wx± ∈ L(N).

k ∈ J Then, (TC3/C ′) implies w|C′x± ∈ L(C ′). By (TC2/C ′), w|i′x± ∈ L(Ci′). Applying
(TC3) and (TC2) forC in the same way implieswx± ∈ L(N). In both cases,w|C′′x± ∈
L(C ′′) follows with (TC1/C ′).

(TC2) w|C′′x± ∈ L(C ′′) for x ∈ OutC′′ . Obviously,x ∈ Outk for somek ∈ K andw|kx± ∈ L(Ck).
Then,wx± ∈ L(N) as just shown in case (TC3).

⊓⊔

Corollary 4.5. The relation ‘trace-correct implementation’ (i.e.{(N,N ′) | N ′ is a trace-correct imple-
mentation ofN}) is a pre-congruence for parallel composition. 3

Proof:
Reflexivity is trivial. Transitivity follows from the above theorem ifI andJ are singletons. Now pre-
congruence follows when considering that in a decomposition a componentis replaced by another single
component. ⊓⊔

We will use this result for the new correctness proof at the end of this section.

4.2. Valid STG transformations

Due to Semantic Rule 2, any language-preserving STG transformation of anoutput-determinate specifi-
cation is valid, as long as the resulting STG is output-determinate. Actually, as Theorem 4.4 (for|J | = 1)
suggests, it is sufficient to preserve trace-correctness. However,it is also desirable for a transformation
to preserve violation of output-determinacy as well, so that an ill-formed STG does not become well-
formed after its application; that is,a transformation should propagate errors rather than eliminate them,
so that they can eventually be detected.This motivates the following notions.
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Figure 10. Two LOD-equivalent STGs which are not bisimilar.

Definition 4.6. (≈lod , �tcod and LOD/TCOD-transformations)
Two STGsN andN ′ areLOD-equivalent, denotedN ≈lod N ′, if

• N andN ′ are both not output-determinate, or

• N andN ′ arelanguage-equivalent and bothoutput-determinate.

They are in theTCOD relation, denotedN �tcod N ′, if

• N andN ′ are both not output-determinate, or

• N ′ is a trace-correct implementation ofN and both areoutput-determinate.

An STG transformation is aLOD/TCOD-transformationif the original and the transformed STG are
LOD-equivalent / in the TCOD relation. 3

Recall that trace-correctness is weaker than language equivalence,since it allows to delete input signals
or to have additional occurrences of input edges. Hence, every LOD-transformation is also a TCOD-
transformation, but not vice versa.

One can observe that any transformation yielding a bisimilar STG is a LOD-transformation, but there
are LOD-transformations which yield a non-bisimilar STG, e.g. determinisation of an output-determinate
STG, as illustrated in Fig. 10. Moreover, any transformation preserving the language and output-
determinacy can be made into a LOD-transformation if its domain is restricted to output-determinate
systems. Below we list some TCOD-transformations which will be useful for our decomposition algo-
rithm.

For one of the transformations and for further use, we first introduce some notions.

Definition 4.7. For transitionst, t′ of some STG,t is a (syntactic)trigger oft′ or triggerst′ if t•∩•t′ 6= ∅.
A λ-transitiont is aweak triggerof t′, if it triggers t′ or another weak trigger oft′. A transitiont with
l(t) 6= λ is asignal triggerof t′, if it triggers t′ or a weak trigger oft′.

A transitiont is in aweak syntactic conflictwith t′, if it is in syntactic conflict witht′ or with a weak
trigger oft′. 3
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List of TCOD-transformations

RedPD Deletion of a redundant place.

RedTD Deletion of a redundant transition.

SecTC1 Type-1 secure contraction of aλ-transition.

LOD-SecTC2 Type-2 secure contractions ofλ-transitions restricted to output-determinate STGs.

SecTC2’ Type-2 secure contractions ofλ-transitions which are not in weak syntactic conflict with an
output transition.

IIC Increasing the concurrency of inputs for deterministic and safe STGs, see Definition 4.9.

The first three transformations in this list always yield a bisimilar STG and thus are LOD-transfor-
mations. Below we prove that LOD-SecTC2 and SecTC2’ are LOD-transformations and that IIC is a
TCOD-transformation (it is not a LOD-transformation since it changes the language). IIC is not in-
tended as a reduction operation, but it may be applied to the finaldeterministiccomponents, where it
is sometimes useful for converting speed-independent circuits into delay-insensitive ones [SKC+99].
Observe also that the determinisation of anoutput-determinateSTGN is a LOD-transformation. In-
deed, iffN is output-determinate, then constructingDA(N) gives a language equivalent STG, which is
not only output-determinate, but even deterministic. The same is true if one additionally minimises the
deterministic automaton.

Theorem 4.8. If N is obtained from some STGN by LOD-SecTC2 or SecTC2’, thenN andN are
LOD-equivalent. 3

Proof:
A secure contraction gives a language equivalent result in any case by Theorem 2.2.

Now we consider an output-determinateN and show thatN is also output-determinate. IfMN [w〉〉M1[x
±〉〉

andMN [w〉〉M2 (w ∈ (Sig±)∗, x ∈ Out), thenMN [w〉〉M1 andMN [w〉〉M2 with (M1,M1), (M2,M2) ∈
S ′ for the ready simulationS ′ of Corollary 2.3. Furthermore,M1[x

±〉〉 due to simulation,M2[x
±〉〉 due

to output-determinacy, andM2[x
±〉〉 due to ready simulation.

This settles the case of LOD-SecTC2, while for SecTC2’ (applied to transition t) it remains to show
thatN is output-determinate ifN is; so assume the latter.

Consider firing sequencesu, v of N such thatl(u) = l(v), MN [u〉[x±〉〉 andMN [v〉M1. We will
now apply the simulationS of Theorem 2.2.2; to get a result on the level of transitions, observe thatthis
relation also is a simulation if the labelling ofN is λ for t and the identity otherwise. This consideration
implies that e.g.u is simulated byu −t, obtained by deleting all occurrences oft in u. Thus, we get
MN [u −t〉[x

±〉〉 andMN [v −t〉M1.
SinceN is output-determinate andl(u −t) = l(v −t), we haveM1[x

±〉〉. Therefore, we can take
somet′ ∈ T and a minimalw ∈ T

∗
such thatM1[wt

′〉, l(t′) = x± and l(w) = λ. By minimality,
each transition inw triggers a transition inwt′; hence each transition inw is a weak trigger of the output
transitiont′, and(∗) it does not share a preset-place witht by assumption of SectTC2’; neither doest′.
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We conclude the proof by showing inductively thatM1[w
′〉 with w′

−t = wt′. As induction base, we
haveM1[λ〉. So assumeM1[w

′′〉M andM1[w
′′

−t〉M , wherew′′
−t is a proper prefix ofwt′ satisfying

M1[w
′′|−t〉M due to simulationS, and lett1 be the next transition ofwt′. If M [t1〉M

′ we are done.
It remains to consider the case that¬M [t1〉. We observe thatM [t1〉, thatM andM coincide on the

places not adjacent tot, and thatt1 andt do not share a preset-place by(∗). Thus, the only reason for
¬M [t1〉 is that for somep0 ∈ t• we haveW (p0, t1) > M(p0).

We choosep1 ∈ t• such thatm1 = W (p1, t1) − M(p1) is maximal;m1 is positive due top0. We
check thatt can firem1 times underM : for all p ∈ •t, we haveM(p) + M(p1) = M((p, p1)) ≥
W ((p, p1), t1) = W (p, t1) + W (p1, t1) (where the inequality follows fromM [t1〉), and thusM(p) ≥
W (p1, t1)−M(p1)+W (p, t1) ≥ m1; recall thatt has only arcs of weight 1. Firingt underM m1 times
gives a markingM ′′, which also satisfies the marking equality withM . By our above considerations
and choice ofp1, M ′′ enablest1; recall thatt1 needs no tokens from•t and is only disabled because of
some missing tokens int• – and even the largest of these deficits has been compensated inM ′′. Thus,
M [tm1t1〉. ⊓⊔

The following definition of IIC can only be applied to safe and deterministic STGs; these require-
ments are not too strict, since – as mentioned above – it is intended for the finaldeterministic components.

p1

a±t1

p2

b±t2

p3

⇒

pa
1 pb

1

a±t1 b± t2

pa
3 pb

3

Figure 11. Increasing input concurrency for the caseM(p2) = 1.

Definition 4.9. (Increasing Input Concurrency)
Let N be a safe STG and lett1 andt2 be two transitions which are labelled with edges of two different
input signalsa andb. If t1 is a syntactic trigger oft2 via a single placep2 with no other incident arcs,
•t1 = {p1} andt2

• = {p3} with p1
• = {t1} and•p3 = {t2}, increasing input concurrency (IIC) oft1

andt2 results in the netN ′ defined as follows (cf. also Figure 11):
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• T ′ = T andl′ = l

• P ′ = P \ {p1, p2, p3} ∪ {pa1, p
b
1, p

a
3, p

b
3}

• W ′(p, t) = W (p, t) andW ′(t, p) = W (t, p) for p ∈ P ∩ P ′ andt ∈ T ′,

W ′(pa1, t1) = W ′(pb1, t2) = W (p1, t1) andW ′(t1, p
a
3) = W ′(t2, p

b
3) = W (t2, p3),

W ′(t, pa1) = W ′(t, pb1) = W (t, p1) andW ′(pa3, t) = W ′(pb3, t) = W (p3, t) for t 6= t1, t2,

W ′(x, y) = 0 otherwise.

• MN ′ = iic(MN ), where the functioniic : [MN 〉 → N
P ′

0 is defined as followsM ′ = iic(M) if:

M ′(p) = M(p) for p ∈ P ∩ P ′

If M(p1) = 1, thenM ′(pa1) = M ′(pb1) = 1 andM ′(pa3) = M ′(pb3) = 0.

If M(p2) = 1, thenM ′(pa1) = M ′(pb3) = 0 andM ′(pa3) = M ′(pb1) = 1.

If M(p3) = 1, thenM ′(pa1) = M ′(pb1) = 0 andM ′(pa3) = M ′(pb3) = 1.

If M(p1) = M(p2) = M(p3) = 0 thenM ′(pa1) = M ′(pb1) = M ′(pa3) = M ′(pb3) = 0.

(Note that these four cases are mutually exclusive sinceN is safe.) 3

Theorem 4.10. (IIC is a TCOD-transformation)
LetN ′ be the result of applying IIC for the transitionst1 andt2 to a deterministic safe STGN . Then

(1) S = {(M, iic(M)) | M ∈ [MN 〉} (i.e. S andiic coincide) is a transition simulation betweenN and
N ′; if (M,M ′) ∈ S andt 6= t2 orM ′(pa1) = 0, thenM ′[t〉M ′

1 impliesM [t〉M1 with (M1,M
′
1) ∈ S.

(2) [MN ′〉 = M
.
∪ M′, whereM = S([MN 〉) andM′ = {M ′

1 | ∃M ′ ∈ M : M ′(pa1) = 1 ∧
M ′[t2〉M

′
1 in N ′}.

(3) N ′ is safe.

(4) N ′ is deterministic.

(5) N ′ is a trace-correct implementation ofN .

Proof:
Let l(t1) = a± andl(t2) = b± for a 6= b.

(1) By definition ofMN ′ , (MN ,MN ′) ∈ S, so assume(M,M ′) ∈ S andM [t〉M1.

• t 6∈ {t1, t2} ∪ p3
•: then•t ⊆ P ∩ P ′ and, sinceM ′ = iic(M), M ′|•

t
= M |•

t
andM ′[t〉M ′

1.
Due to definition ofW ′, M ′

1|P∩P ′ = M1|P∩P ′ . If p1 ∈ t•, observe thatM(p1) = 0 because
N is safe, andM ′(pa1) = M ′(pb1) = 0 by definition ofM ′; therefore,M1(p1) = 1 and
M ′

1(p
a
1) = M ′

1(p
b
1) = 1. Also,M ′(pa3) = M ′

1(p
a
3) = M ′(pb3) = M ′

1(p
b
3) = 0 and then in any

case,M ′
1 = iic(M1).

• t ∈ p3
•: thenM(p3) = 1 (by the safeness ofN ), M ′(pa3) = M ′(pb3) = 1 andM ′[t〉M ′

1. With
similar arguments as above,(M1,M

′
1) ∈ S.
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• t = t1: thenM(p1) = 1 andM1(p2) = 1. Therefore,M ′(pa1) = M ′(pb1) = 1 andM ′(pa3) =
M ′(pb3) = 0. Hence,M ′[t1〉M

′
1 with M ′

1(p
a
1) = M ′

1(p
b
3) = 0 andM ′

1(p
a
3) = M ′

1(p
b
1) = 1.

Clearly,M ′
1|P∪P ′ = M1|P∪P ′ and(M1,M

′
1) ∈ S.

• t = t2: similar to the caset = t1.

Now assumeM ′[t〉M ′
1. A similar case analysis shows thatt 6= t2 or M ′(pa1) = 0 impliesM [t〉M1

with (M1,M
′
1) ∈ S.

(2) Since(M,M ′) ∈ S impliesM ∈ [MN 〉, we haveM ⊆ [MN ′〉 by (1); this in turn implies that
M′ ⊆ [MN ′〉, too.

Due to (1) andMN ′ ∈ M, a marking in[MN ′〉\M can only be reached via firingt2 from a marking
which markspa1, i.e. such a marking is inM′. Now takeM ′

1 ∈ M′, i.e. ∃(M,M ′) ∈ S, M ′[t2〉M
′
1

andM ′(pa1) = 1. This impliesM(p1) = 1 in N , andM ′
1(p

b
3) = 1, M ′

1(p
a
3) = M ′

1(p
b
1) = 0 and

M ′
1|P∩P ′ = M1|P∩P ′ in N ′.

We now consider all markings reachable directly fromM ′
1. Clearly, M ′

1[t1〉M
′
2 with (M2,M

′
2)

∈ S for M1[t1t2〉M2, i.e. M ′
2 ∈ M. Let nowM ′

1[t〉M
′
3 with t 6= t1. We havet 6= t2 due to

M ′
1(p

b
1) = 0 andt 6∈ p3

• due toM ′
1(p

a
3) = 0. Therefore,•t∩ (•t2∪ t2

•) = ∅ in N ′, andt is activated
concurrently tot2 underM ′: M ′[t〉M ′

4[t2〉M
′
3 andM ′

4(p
a
1) = M ′(pa1) = 1. Additionally, (1) implies

M [t〉M4 and(M4,M
′
4) ∈ S. Thus,M ′

3 ∈ M′ implying [MN ′〉 ⊆ M∪M′, which proves the claim.

(3) Follows from (2) when considering the properties ofM andM′.

(4) ForM ′ ∈ [MN ′〉, M ′[t〉, M ′[t′〉 andt 6= t′ we will show thatl(t) 6= l(t′); the claim is obvious for
the case{t, t′} = {t1, t2}, and in what follows we assume that{t, t′} 6= {t1, t2} (∗).

LetM ′ ∈ M. Therefore,(M,M ′) ∈ S for someM . If t2 /∈ {t, t′} orM ′(pa1) = 0, then (1) implies
M [t〉 andM [t′〉, and we are done sinceN is deterministic. Let w.l.o.g.t = t2 andM ′(pa1) = 1;
thus,M(p1) = 1 andM ′(pb1) = 1. Hence,M [t1〉M1[t2〉. On the other hand, we haveM [t′〉 due to
(1) andt′ 6= t1 by (∗). Together, this givesM1[t

′〉 and again the claim follows from the determinism
of N .

Let M ′ ∈ M′. Due to (2), there is a markingM ′′ ∈ M with M ′′[t2〉M
′ andM ′′(pa1) = 1. With

(3), we concludet2 6∈ {t, t′} andM ′′(pa3) = M ′(pa3) = 0. The latter shows thatp3 6∈ •t ∪ •t′ and
thusM ′′[t〉 andM ′′[t′〉. Hence, there is a markingM of N with M [t〉 andM [t′〉, which proves the
claim.

(5) Let MN ′ [v〉〉M for somev ∈ (Sig±)∗. SinceN is deterministic, there is a unique transition se-
quenceu with l(u) = v. Due to (1),MN ′ [u〉M ′ with (M,M ′) ∈ S, and obviouslyMM ′ [v〉〉M ′,
which proves (TC1).

If M ′[x±〉〉 for somex ∈ OutN ′ , clearly this is due toM ′[t〉 with t 6= t2. Then (1) impliesM [t〉
and thereforeM [x±〉〉.

⊓⊔

Theorem 4.10(4,5) shows that IIC is indeed a TCOD-transformation. Furthermore, this result can
easily be extended to more general cases:
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Figure 12. Counterexample for application of IIC to an output-determinate but non-deterministic STG. The STG
on the left hand side is output-determinate, but the STG resulting from applying IIC forb+ andc+ is not, i.e. IIC
is not a TCOD-transformation in this case.

• Three or more sequential transitionst1, . . . , tn (each labelled with a different input) can be made
concurrent with a similar construction.

• It is also possible to allow more than one place in the preset oft1 and the postset oftn.

• A bit surprisingly,t1 could also be labelled with an output signal.

For the first two cases, the proof structure stays the same – the proof getsonly slightly more complicated.
In the last case, the proof stays the same since it never used the fact thatt1 is labelled with an input.

Regarding termination, IIC can only be applied finitely many times to a final component: consider
the placep2 ‘in the middle’, which only has a single transition in its pre- and in its postset; IIC reduces
the number of such places. Observe that IIC cannot be applied to the newplaces (pa1, pb1, p

a
3 andpb3).

Finally, observe thatN has to be deterministic rather then output-determinate as the counterexample
in Figure 12 demonstrates.

4.3. The Decomposition Algorithm

Now, we describe the extended version of the STG decomposition algorithm of [VW02, VK06], which
uses the TCOD-transformations of the previous section. Given a specification STGN , the algorithm
works as follows:
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• Choose afeasible partition(Ini, Outi)i∈I for some setI with Outi ⊆ OutN andIni ⊆ InN ∪
OutN for eachi ∈ I (as explained in greater detail below). For eachi ∈ I, a componentCi will
be constructed, which produces the signals inOuti by taking into account only the signals inIni.

• Construct aninitial decomposition(Ci)i∈I as follows. For eachi ∈ I, theinitial componentCi =
(P, T,W, li, MN , Ini, Outi) is a copy ofN except for the labelling and the signal classification.
If l(t) ∈ (InN ∪ OutN ) \ (Ini ∪ Outi), then the label is changed toli(t) = λ; sucht and their
original signals arehidden. In contrast, transitions which have labelλ in N already are called
specification dummiesor spec-dummiesfor short.

Then perform the following steps to one of theCi after the other:

• Repeatedly apply TCOD-transformations or backtracking:

Backtracking: For some hidden signals 6∈ Ini∪Outi, adds to Ini and replaceCi by the respective
new initial component.

• Eventually, checkCi for output-determinacy. If the check fails, perform backtracking for some
hidden signal or, if no hidden signal is left, report thatN is not output-determinate. Otherwise,
componentCi is constructed.

We now give some more detailed explanations for the steps of our algorithm. Afeasible partition
is a family(Ini, Outi)i∈I for some setI such that the setsOuti, i ∈ I, are a partition ofOutN and for
eachi ∈ I we haveIni ⊆ InN ∪OutN \Outi, and furthermore:

(F1) If signals and output signalx of N are in structural conflict, thenx ∈ Outi impliess ∈ Ini for
s ∈ In ands ∈ Outi for s ∈ OutN for eachi ∈ I.

The rationale for this is: clearly, a component responsible for output signal x must at least ‘see’
any signal that could be in dynamic conflict withx in N ; if such a signal is an output as well,
the component should also produce it, because two conflicting outputs cannot be produced by two
different components in a speed-independent way.

(F2) If there aret, t′ ∈ TN such thatl(t′) ∈ Outi andt is a signal trigger oft′, then the signal oft is in
Ini ∪Outi.

The latter signal might be inIni even if it belongs toOutN ; in this case, it will be produced by
some other component, and theith component just listens to it.

As yet, it is not clear how to choose a feasible partition that gives an optimal decomposition in some
sense, e.g. one with the least overall size of the reachability graphs of its components. But there is a
canonical candidate: according to (F1), output signals in structural conflict must be in the sameOuti,
and there is a finest partition ofOutN satisfying this; for each of the resultingOuti, there is a least set
Ini such that (F1) and (F2) are satisfied. In many cases, this canonical feasible partition will have one
(Ini, Outi) for each output signal.

The main idea of the algorithm is now to remove theλ-transitions using appropriate secure transition
contractions and other TCOD-transformations. This way, we hopefully make the component STGs small
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enough for the output-determinacy check and subsequent synthesis to be feasible. In anoptimistic strat-
egy, one performs TCOD-transformations as long as possible – with our list of TCOD-transformations,
this will terminate eventually, see below, – and only backtracks if forced to in the last step.

Observe that backtracking modifies the feasible partition in such a way that the resulting partition
is feasible again; in particular,Ci already has all signals that are in structural conflict with some output
signal ofCi.

Backtracking undoes all the TCOD-transformations that have already been performed onCi. In
many cases, it will be possible to perform some of these also on the new initial component; hence,
we have studied in [SVWK06] how to implement backtracking in such a way thatnot always all the
TCOD-transformations are undone.

The algorithm of this paper is a generalisation of the decomposition algorithm in [VK06], where
the latter only dealt with deterministic specifications; for these, the latter algorithmconsidered the same
partitions, transformations, and backtracking. Since the concept of output-determinacy was not available,
it was required to remove allλ-transitions; thus, backtracking had also to be performed for a hidden signal
if a respective transition could not be contracted just for technical reasons, e.g. because it was on a loop
or had an arc with the weight greater than one. Since backtracking appliesto all transitions of a signal,
one had to un-hide a number of transitions just for technical reasons, although they had already been
contracted successfully. This can make the reachability graph much larger, while from the perspective
of circuit synthesis the additional signal might not be needed. We have thechance to avoid this in the
present paper, and this is an important contribution.

If a transition contraction generates a new dynamic auto-conflict, then – as explained in [VW02,
VK06] – this is an indication that the original signal of the contracted transitionmight be important
for producing the proper outputs; here we can add that the latter corresponds to a violation of output-
determinacy. Thus, to be sure to get a correct result, it was recommendedto backtrack in case of a new
dynamicauto-conflict; to make this strategy efficient, one has to avoid the generation of the reachability
graph, hence it was recommended to backtrack in case of a newstructural auto-conflict. With this
strategy, the algorithm of [VK06] is guaranteed to find a correct decomposition without any final check.

In another version discussed in [VK06], the algorithm does not backtrack in case of a new structural
auto-conflict. The hope is that the conflict might not indicate a dynamic auto-conflict, and that avoiding
backtracking gives a smaller component. The price to pay is a final sanity check as in our present
algorithm: in the end, components had to be checked for determinism, which is more restrictive than our
check. The experience reported in [SVWK06] is that for this version thehope is most often in vain.

Consequently, we recommend aconservative strategy: whenever the contraction of a hidden tran-
sition creates a new structural auto-conflict, one should backtrack on therespective signal – unless the
conflicting transitions are duplicates and one of them can thus be deleted. Inthis latter case, the conflict
clearly does not indicate a violation of output-determinacy. There is no obvious recommendation if a
new structural auto-conflict is created by the contraction of a spec-dummy.

If all components are constructed successfully, circuits are synthesised from them using tools like
PETRIFY or MPSAT. Such tools build the reduced state vector tables for Boolean minimisation for each
Ci, which can be viewed as derived from the respective deterministic finite automatonDA(Ci). Hence,
the equations derived from the state graphs give a correct implementation of the specificationN , as we
will prove in the following.
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4.4. Correctness

Before we present the correctness proof, observe that we have partitioned theλ-transitions into hidden
transitions and spec-dummies. Observe further that notions like signal trigger and weak syntactic conflict
(Definition 4.7) are concerned withλ-transitions; when we speak of signal triggers in condition (F2), we
considerN , i.e. the respectiveλ-transitions are spec-dummies; when we apply SecTC2’ to a component
and check for a weak syntactic conflict, the respectiveλ-transitions could be hidden transitions as well
as spec-dummies. We start with two lemmata.

Lemma 4.11. LetN be an STG with an initial decomposition(Ci)i∈I where all components are output-
determinate. Then(Ci)i∈I is a trace-correct distributed implementation ofN . 3

Proof:
(TC1) Letw ∈ L(N) due tou ∈ T ∗. Then, for one transition ofu after the other, we can fire

all copies of the respective transition in theCi. In more detail, all copies with label not equal toλ are
synchronised in the parallel composition and fire as one transition; the othercopies fire one after the
other. This shows thatw C ∈ L(C).

(TC2) & (TC3) Again, letw ∈ L(N) due tou ∈ T ∗. To show (TC3), considerj ∈ I such
that x ∈ Outj andw Cj

x± ∈ L(Cj) due to the firing sequencevt with l(t) = x±. Sincelj(v) =
w Cj

= lj(u) andCj is output-determinate, we have a firing sequenceuu′t′ of Cj with lj(u
′) = λ

and lj(t′) = x±; choose such au′ with minimal length. By minimality, each transition inu′ triggers
a succeeding transition inu′t′; thus, ifu′ contained a hidden transition, we could consider the last one,
which would be a signal trigger oft′, a contradiction to (F2) forCj . We conclude that all transitions in
u′ are spec-dummies. Thus, firinguu′t′ in all Ci as in the first part of this proof, we get thatw Cx

± is a
trace ofC.

Wheneverw Cx
± is a trace ofC, we havew Cj

x± ∈ L(Cj). So from the above argument, we also
see that (TC2) holds since we can fireuu′t′ in N as well, showingwx± ∈ L(N). ⊓⊔

Lemma 4.11 will be used as the induction base for our main theorem, which states the correctness of
the new decomposition algorithm.

Lemma 4.12. If an STGN is not output-determinate, in every initial decomposition(Ci)i∈I someCi is
not output-determinate as well. 3

Proof:
Suppose thatMN [wx±〉〉 and MN [w〉〉M in N with x ∈ Outj . Then MCj

[w Cj
x±〉〉 and

MCj
[w Cj

〉〉M in Cj . Assume now thatCi is output-determinate, i.e.M [x±〉〉 andM [vt〉 with l(t) =
lj(t) = x± and lj(v) = λ. As in the previous proof, we choosev to be minimal; then, all transi-
tions inv are weak triggers oft in Cj , none of them can be a signal trigger inN , and thus they all are
spec-dummies. This shows thatM [vt〉 also gives rise toM [x±〉〉 in N , henceN is output-determinate
contradicting the hypothesis. ⊓⊔

Theorem 4.13. (Correctness)
Consider the application of the decomposition algorithm to an STGN .

(1) If only the TCOD-transformations from the list in Section 4.2 are applied,the algorithm terminates.
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(2) If all components are constructed successfully, thenN is output-determinate,(Ci)i∈I is a trace-
correct distributed implementation ofN , and(DA(Ci))i∈I is a correct distributed implementation
of N .

(3) If the algorithm reports thatN is not output-determinate, then this is the case. 3

Proof:

(1) This is essentially a result from [VK06]: backtracking un-hides a hidden signal, which can only be
done finitely often. When no backtracking occurs, contractions and transition deletions reduce the
number of transitions, while the deletion of places reduces the number of places without increasing
the number of transitions.

Recall that IIC is only applied to the final components after determinisation andnot mixed up with
the other operations; as it was argued above, it can be applied only finitelyoften then.

(2) Suppose all components are constructed successfully. IfN were not output-determinate, we could
consider the initial components that arise after the last backtracking. By Lemma 4.12, one of them
would not be output-determinate, and this would be preserved by the TCOD-transformations, con-
tradicting our hypothesis.

This consideration also implies that all mentioned initial components are output-determinate; hence,
by Lemma 4.11 this initial decomposition(Ci)i∈I is a trace-correct distributed implementation ofN .
Furthermore, due to the definition of TCOD-transformations, each final component is a trace-correct
implementation of its corresponding initial component. Theorem 4.4 then implies alsothat the set of
final components is a trace-correct distributed implementation ofN .

Also determinisation of aCi is a TCOD-transformation, and the third claim about the deterministic
automatons(DA(Ci))i∈I follows from Theorem 4.3.

(3) The algorithm reports thatN is not output-determinate only if there is some component without
hidden signals which is not output-determinate. In this case, the respectiveinitial component is also
not output-determinate; this initial component is identical toN except that some outputs ofN might
be inputs. It is easy to see that in this situation the violation of output-determinacycarries over toN .

⊓⊔

It should also be noted that for a consistentN only consistent components are produced, cf. [VK06].
Compared to the approach of [VK06], the above correctness proof is considerably simpler and deals with
more general specifications. The price we pay is the check for output-determinacy, which can be avoided
in the approach of [VK06] (at the expense of requiringN to be deterministic and prohibiting dummies
in the final components). Additionally, the proof in [VK06] takes care to show that, for deterministic
specifications, type-2 secure contractions can be applied without restriction. Since we use the same
transformations as in [VK06], we can read off from the correctness proof there that the same result
applies here if in the specificationN there are no weak triggers of orλ-transitions in structural conflict
with output transitions; this observation means that we do not have to check for weak syntactic conflicts
and this can save a little time.
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5. Experiments

As described in the previous sections, it is now possible to leaveλ-transitions in the final components as
long as they are output-determinate. Moreover, the new approach can also be used to speed up existing
decomposition strategies, in particulartree decomposition[SVWK06] (denoted TREEOLD here). TREE-
OLD generates all components together, re-using the intermediate STGs which are generated during
decomposition. For efficiency, only some signals are contracted at each stage of the algorithm, resulting
in re-usable intermediate STGs. If not all transitions of some signals can be contracted, the contrac-
tion of s is postponed to later stages of the algorithm, which is detrimental for performance due to the
decreased usability of intermediate STGs. Note thatall the transitions ofs are postponed, even if only
oneof them cannot be contracted, because backtracking is performed forsignals rather than individual
transitions. For practical STGs however, most of the postponed signals can actually be contracted at later
stages of the algorithm.

The new approach (TREENEW) can avoid such postponing of signals under certain circumstances:
if in an intermediate STG a transition of a signals cannot be contracted due to a new structural auto-
conflict, postponing fors is performed as in TREEOLD. But if all transitions are non-contractible due to
technical reasons only (e.g. if they are not safeness-preserving),no backtracking is performed and the
remaining non-contractible transitions are left as dummies in the intermediate STG.As mentioned above,
most of them will be contracted at later stages, and otherwise they will remain inthe final component.

We applied TREENEW to a number of benchmarks constructed from two basic BALSA-inspired hand-
shake components (cf. [EB02]) also used before by [CC06]: the 2-way sequencer, which performs two
subsequent handshakes on its two ‘child’ ports when activated on its ‘parent’ port, and the 2-waypar-
alleliser, which performs two parallel handshakes on its two ‘child’ ports when activated on its ‘parent’
port; either can be described by a simple STG. The benchmark examples SEQPARTREE-N are complete
binary trees with alternating levels of sequencers and parallelisers, as illustrated in Fig. 13 (N is the num-
ber of levels), which are generated by the parallel composition of the elementary STGs corresponding to
the individual sequencers and parallelisers in the tree. We also worked with other benchmarks built from
handshake components (e.g. trees of parallelisers only); the results did not differ much, so we consider
here only SEQPARTREE-N.

In contrast to the decomposition method of [CC03,CC06], we allow components with more than one
output. This was utilised by choosing the initial partition in such a way that each component of the de-
composition corresponds to one handshake component. Other partitions ofthe outputs might lead to even
faster synthesis; there are also ideas for the automatic detection of suitable partitions, see [SVWK06].

We applied four variants of tree decomposition to these benchmarks, as wellas stand-alone synthesis
with PETRIFY and MPSAT. (The tool for CSC conflict resolution and decomposition presented in [CC06,
Car03] was not available from the authors.) The experiments were conducted on a PC with Pentium 4
HT/3GHz processor and 2GB RAM.

TREEOLD is compared with TREENEW for ordinary contractions as described in Section 4.3 as
well as forsafeness-preserving contractions, i.e. contractions which do not destroy the safeness of the
STG. (This kind of contractions is needed to combine decomposition with unfolding techniques for
STG synthesis, see [KS07].) Essentially, the preservation of safenessis another condition which can
prevent some contractions and thus increases the runtime. This resulted in the mentioned four series of
experiments, see Table 1.
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Size Signals

Benchmark |P | – |T | |In| – |Out|

SEQPARTREE-05 382 – 252 33 – 93

SEQPARTREE-06 798 – 508 65 – 189

SEQPARTREE-07 1566 – 1020 129 – 381

SEQPARTREE-08 3230 – 2044 257 – 765

SEQPARTREE-09 6302 – 4092 513 – 1533

SEQPARTREE-10 12958 – 8188 1025 – 3069

Figure 13. Left : SEQPARTREE-03. Filled dots denote active handshake ports (they can start a handshake), blank
dotes denote passive ones. Each port is implemented by two signals, an input and an output. If two ports are
connected then the parallel composition merges these four signals into two outputs.Right: Sizes of the STGs in
the SEQPARTREE series.

In the end, the final components were synthesised (which includes the resolution of CSC conflicts)
with PETRIFY, which was possible for every component. As a consequence, this shows that the de-
composition is correct: a necessary condition for synthesis is the absenceof CSC conflicts. However,
a violation of output-determinacy is a special case of a CSC conflict,which cannot be resolvedas dis-
cussed in the following section. Hence, the resulting components are indeedoutput-determinate, and
Theorem 4.13(1) guarantees the correctness. Moreover, the resulting components turn out to be the same
for all series, and hence the synthesis times are given only once. Observe that the latter property makes
these benchmarks especially useful for comparing the four variants of the algorithm presented in Table 1.

The synthesis with stand-alone PETRIFY or MPSATdid not terminate within 12 hours, even for SEQ-
PARTREE-05, as the corresponding STGs are very large. We consider it as a notable achievement that
the proposed approach could synthesise them so quickly — e.g. SEQPARTREE-10 with more than 4000
signals was synthesised in less than 11 minutes. One can see that leaving non-contractible transitions
as dummies in the intermediate STGs is useful, especially for safeness-preserving contractions. The
reason is that, in this variant, the decomposition algorithm encounters moreλ-transitions which are non-
contractible due to technical reasons (viz. they do not preserve safeness). TREEOLD would backtrack
and postpone for the respective signals, which significantly increases the runtime of this approach. As
one can see, the new approach leaving such transitions as dummies in the intermediate STGs is much
faster.

6. Output-Determinacy and Internal Signals

Up to now, we considered STGs withoutinternal signals, i.e. signals which are produced by the circuit
but are not visible to the environment. Usually, such signals are introducedautomatically into the STG
during the synthesis process, mainly in order to resolve encoding conflicts, but also to perform logic
decomposition (i.e. splitting large gates into smaller ones) or – as a recent application – to preserve
speed-independence during decomposition [SVWW08].
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Safe Non-Safe

Benchmark TREENEW TREEOLD TREENEW TREEOLD Synthesis

SEQPARTREE-05 1 1 1 2 5

SEQPARTREE-06 4 4 3 5 16

SEQPARTREE-07 8 9 8 9 22

SEQPARTREE-08 17 32 19 21 1:02

SEQPARTREE-09 1:18 1:27 1:24 1:29 1:30

SEQPARTREE-10 6:03 42:37 5:49 7:04 4:32

Table 1. Results for the handshake benchmarks. Columns 2 – 5 give the pure decomposition time, the last column
gives the PETRIFY synthesis time for the components. Times are given in seconds or as minutes:seconds.Safe
means safeness-preserving contractions, theold method does not leaveλ-transitions in the intermediate results,
thenewone does.

There are several possible interpretations for internal signals, depending on the role the STGs plays.
Though an STG is always a specification of an asynchronous circuit, it iscommon for an STG to go
via a series of refinements, until eventually the ‘final’ STG is produced from which the gate-level netlist
is synthesised. Hence, the ‘distance’ from the STG to the circuit netlist canvary; in particular, in the
context of decomposition, the specification STG is ‘far’ from the final circuit, while the component STGs
are ‘close’ to it.

As a consequence, a far-off specification should only describe theexternalbehaviour of a circuit
(i.e. its interface to the environment) rather than details of the physical implementation. For this purpose
internal signals are not needed, and so a specification STG should not contain them. (If it does contain
them, they can be treated like a designer’s suggestion; in particular, the synthesis tool is free to turn them
into dummies, as they are anyway ignored by the environment.) On the other hand, for the ‘final’ STG
the internal signals are useful and can be mapped to physical wires. Hence, for this STG, it makes sense
to consider them as outputs of the circuit, which (unlike dummies) occur in traces and are a part of the
state encoding.

The semantics of internal transitions (i.e. whether they are treated as dummies or as outputs) is
important for the definition of output-determinacy; indeed, whether the STG isoutput-determinate or
not may depend on the chosen semantics. As described above, we choose to treat internal transitions as
dummies in the specification STG and as outputs in the implementation STG. Such a treatment might
be seen as somewhat unusual, particularly considering the internal transitions in the specification as
dummies. However, we argue that it is reasonable, as considering these transitions as outputs leads to
undesirable situations where an STG is not output-determinate, but still implementable by a deterministic
one, as illustrated in Fig. 14. On the other hand, the proposed treatment allowed us to lift Proposition 3.3,
stating that only output-determinate STGs can be deterministically implemented, to the case of STGs
with internal signals.

Formally, an STG is now defined asN = (P, T,W,MN , In,Out, Int, l), whereInt is the set of
internal signals, such thatInt ∩ (In ∪ Out) = ∅, and l is extended accordingly. We will denote by
Ext = In ∪Out the set ofexternalsignals ofN .
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Figure 14. Counterexample: the non-output-determinate STG on the left with internal signalsv1, v2 is imple-
mented by the STG on the right.

We now generalise the notion of correct implementation given in Definition 3.1 to implementations
with internal signals. Observe that we requireIntC ∩ ExtN = ∅ for technical reasons only; this can
always be achieved by a suitable renaming.

Definition 6.1. (Correct Implementation with Internal Signals)
A deterministic STGC (with internal signals) is acorrect implementationof an STGN without internal
signals ifInC ⊆ InN , OutC = OutN , IntC ∩ExtN = ∅, and for allw and allM such thatMN [w〉〉M
the following hold:

(IC1) There is a tracev of C such thatMC [v〉〉 with v|ExtC = w|ExtC .

For every tracev of C such thatMC [v〉〉M
′ with v|ExtC = w|ExtC :

(IC2) If a ∈ InN andM [a±〉〉, then eitherM ′[a±〉〉 or a 6∈ InC .

(IC3) If x ∈ OutN , thenM [x±〉〉 iff M ′[vCx
±〉〉 for somevC ∈ (Int±C)

∗. 3

In this definition, the items (IC1)/(IC2)/(IC3) correspond to (C1)/(C2)/(C3) from Definition 3.1 with
the following differences: clearly, every trace of the specification must be possible in the implementation.
However, now the implementation might produce this trace with the help of internalsignals. Hence, in
(IC1) we just require that these traces coincide externally, and althoughC is deterministic, there is the
possibility that different traces look externally equal and that a tracev of N can be matched in different
ways byC. Observe that the implementation is still allowed to have fewer inputs than the specification.

Since internal signals are introduced for technical reasons like resolution of CSC conflicts, the result-
ing components are not to be considered as a specification but rather like ahardware-close implementa-
tion. Therefore, the internal signals should be treated like invisible outputs.This has two consequences
for the handling of inputs in (IC2), resulting from the fact that the environment cannot observe the in-
ternal signals ofC: inputs of the environment are produced whenever a corresponding external trace has
occurred, no matter in which state the implementation is. Therefore, the implementation must be ready
to receive an activated input inall states corresponding to an external trace, i.e. in the corresponding
STG an input cannot be triggered by an internal transition. (While the latter condition is common and is
also needed to guarantee speed-independence, the former condition differs from the handling of inputs
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in the definition of output-determinacy.) In contrast, outputs can be preceded by internal signals, because
the environment will wait for the circuit until the output is produced.

Further justification of soundness and usefulness of these assumptions can be found in [SV05] in the
discussion after the correctness notion with internal signals.

Violation of output-determinacy always results in a CSC-conflict, because ifa trace can be executed
in two different ways, the reached states obviously have the same state vector. Below we show that this
special conflict cannot be resolved by insertion of internal signals. Infact, we prove a more general
statement: if a specification is not output-determinate, it cannot be implemented bya deterministic STG
with internal signals. Thus, if an STG is not output-determinate, then the result of a behaviour-preserving
insertion of internal signals is also not output-determinate and still has CSC conflicts. The result below
is an extension of Proposition 3.3 to implementations with internal signals.

Proposition 6.2. Let N be an STG without internal signals andC (with internal signals) be a correct
implementation ofN . ThenN is output-determinate. 3

Proof:
For x ∈ OutN , let MN [w〉〉M1[x

±〉〉 and MN [w〉〉M2. Then, by (IC1) of Definition 6.1, we get
MC [v〉〉M

′ for somev such thatv|ExtC = w|ExtC , and thus,M ′[v′x±〉〉 for somev′ ∈ (Int±C)
∗ by

M1[x
±〉〉 and (IC3). Therefore, by (IC3),M2[x

±〉〉. ⊓⊔

7. Conclusion

In this paper we proposed the concept of output-determinacy, which is a generalisation of determinism.
It allowed us to define in a natural way a semantics of non-deterministic STGs,in particular STGs
with dummies. We showed that a specification is ill-formed if it is not output-determinate, whereas the
semantics of an output-determinate STG is its language. Moreover, for the class of output-determinate
STGs we gave a denotational (language-based) notion of a correct implementation, and showed that it is
consistent with the corresponding operational notion. The computational complexity of checking output-
determinacy has been investigated for several important net classes, and a practical test for the cases of
safe or bounded divergence-free STGs has been developed.

One of the main application of the theory developed in this paper is the new algorithm for decom-
position of STGs. This algorithm is much more flexible than the one in [VW02, VK06]. In particular,
it no longer requires that all theλ-transitions must be contracted in the final components, and it can use
more net reductions; moreover, the list of such reductions can easily be extended by adding new TCOD-
transformations. The experimental results show that our decomposition algorithm can handle very large
STGs efficiently. Combined with tools for logic synthesis [KS07], it can be used in the context of con-
trol re-synthesis of BALSA specifications, as mentioned in the introduction. An approach to re-synthesis
using decomposition can be found in [SVWW08].
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