
Initialisation of Asynchronous Circuits

Danil Sokolov, Victor Khomenko, Alex Yakovlev

Newcastle University, UK



Introduction

2 / 11

• Speed-independent (SI) synthesis does not insert reset logic

• Initialisation phase does not have to be SI

• Initialisation via an externally generated reset signal (e.g. active-low)

• reset is initially low, sufficiently long to complete initialisation of all gates
• reset eventually goes high and normal SI operation begins
• reset stays high for the whole time of circuit normal operation

• Ways to initialise a circuit (can be used in combination)

• Rely on the initial state of some of the inputs
• Substitute some gates with “resetable” alternatives
• Insert additional gates to explicitly initialise the internal and output signals

(they act as buffers during normal operation, so be careful with isochronic forks)

• Need for design automation



Circuit initialisation in WORKCRAFT

3 / 11

• Init to one property (Boolean flag)

• Defines the expected initial state of the signal
• Automatically assigned if a circuit is synthesised by one of the backend tools
• Designer responsibility if the circuit is manually altered

• Force init property (Boolean flag)

• Defines if the signal is known to be in a correct initial state
• Primary input – environment takes care of initialising it to the expected state
• Component output – necessary circuitry will be added to properly initialise that pin

• Propagation of the initialisation state

• Signals whose Forced init property is set are initialised (others are uninitialised)
• Try to evaluate uninitialised signals using Init to one property of initialised signals
• If the Boolean value of a signal can be derived, then it has propagated initial state

and the signal is also considered initialised
• Repeat evaluation of uninitialised signals until no further progress can be made



Initialisation analyser tool

4 / 11

• Highlighting gates initialisation

• Indicates pins initial state

• Toggle Force init property by clicking

input ports and output pins (or gates)

• Changing Force init for groups of signals

• Heuristic-based complete initialisation

• Automatic insertion of reset logic

(active-low or active-high reset)



Initialisation via primary inputs

5 / 11

• Demo: celement-decomposed.circuit.work

• Sufficient to force the primary inputs to their initial state for complete initialisation



Initialising combinational loops

6 / 11

• Demo: buck-feedback.circuit.work



Reseting C-elements via SET/CLEAR pins

7 / 11

• Demo: buck-monot.circuit.work



Forcing C-element inputs

8 / 11

• Demo: buck-monot-inv.circuit.work



Careful with the forks though!

9 / 11

• Demo: example-forks.circuit.work



Verification

10 / 11

• Reset insertion should not break the circuit (unless you experiment with the forks)

• Still, always verify the circuit after modification

• Use the original STG as the environment for the modified circuit

• Automatic setup for active-low reset (active-high is symmetrical)

• Init to one property is unset (reset signal is initially low)

• Set function is assigned to 1 (reset signal is allowed to go high)

• Reset function is assigned to 0 (once high reset signal never goes low again)



Practical: Initialisation of speed-independent circuits

11 / 11

• Tutorials section at workcraft.org

• Direct link: https://workcraft.org/tutorial/synthesis/initialisation/start


	Introduction
	Circuit initialisation in Workcraft
	Initialisation analyser tool [scale=0.5]0homedanilworkslides2019-07-11-Dialog-Initialisationfiginitialisationanalyser-button.eps
	Initialisation via primary inputs
	Initialising combinational loops
	Reseting C-elements via SET/CLEAR pins
	Forcing C-element inputs
	Careful with the forks though!
	Verification
	Practical: Initialisation of speed-independent circuits

