Initialisation of Asynchronous Circuits

Danil Sokolov, Victor Khomenko, Alex Yakovlev

Newcastle University, UK

Introduction

o Speed-independent (Sl) synthesis does not insert reset logic
» Initialisation phase does not have to be S
o Initialisation via an externally generated reset signal (e.g. active-low)

reset is initially low, sufficiently long to complete initialisation of all gates
reset eventually goes high and normal Sl operation begins
reset stays high for the whole time of circuit normal operation

» Ways to initialise a circuit (can be used in combination)

Rely on the initial state of some of the inputs

Substitute some gates with “resetable” alternatives

Insert additional gates to explicitly initialise the internal and output signals

(they act as buffers during normal operation, so be careful with isochronic forks)

» Need for design automation

2/11

Circuit initialisation in WORKCRAFT

» Init to one property (Boolean flag)

Defines the expected initial state of the signal
Automatically assigned if a circuit is synthesised by one of the backend tools
Designer responsibility if the circuit is manually altered

» Force init property (Boolean flag)

Defines if the signal is known to be in a correct initial state
Primary input — environment takes care of initialising it to the expected state
Component output — necessary circuitry will be added to properly initialise that pin

o Propagation of the initialisation state

Signals whose Forced init property is set are initialised (others are uninitialised)

Try to evaluate uninitialised signals using Init to one property of initialised signals
If the Boolean value of a signal can be derived, then it has propagated initial state
and the signal is also considered initialised

Repeat evaluation of uninitialised signals until no further progress can be made

3/11

Initialisation analyser tool

o Hig.hlighting gqtgg initialisation Tool controls =
e Indicates pins initial state Gate highlight legend
Unknown initial state
BN G— Don't touch zero delay
AOI21 " Problem of initialisation
- OR2 Forced initial state
— out Propagated initial state
nlp— = Pin initial state:
in2 pt 92 O / O Expected high J low
B / B Propagated high f low
o Toggle Force init property by clicking & / Forced high / low
input ports and output pins (or gates) :
o Changing Force init for groups of signals E;‘i e || = || - @
o Heuristic-based complete initialisation
o Automatic insertion of reset logic Force init pins
(active-low or active-high reset) g3.0ON
Insert reset Insert reset
(active-high) (active-low)

4/11

Initialisation via primary inputs

o Demo: celement-decomposed.circuit.work

inl p—e—mn ‘

[I

P out

—
meom

inZ2 p—-o—n

Sufficient to force the primary inputs to their initial state for complete initialisation

5/11

Initialising combinational loops

o Demo: buck-feedback.circuit.work

INV
' AND2
ocC p |
gn_ack » O o—»gp }ﬁ:D—l—o—b gp
uv INV NOR3

»gn

|
gp_ack » _ D—I—I gn
ZCcp _

6/11

Reseting C-elements via SET/CLEAR pins

Demo: buck-monot.circuit.work

INV

OCD—I—DC}I—L.
INV

AND?2

gn_ack HJ[>0~HD_._|_.

I

*» gp

L]
gp_ack » L]
zZc p |

INV

oc q—,—-1>0-—
reset B

o 1NV

0 AND?2 \I—Q—Il gp
gn_ack H—D&I—r s

uv p

o
gp_ack » u D_H gn
dell 0

7/ 11

Forcing C-element inputs

e Demo: buck-monot-inv.circuit.work
INV

OCD—I—DO—I—LFQO ocp—=n o—l_.

C ap =» gp
gn_ack = - - | C2 gn_ack »-=m —u |
uv m r uv p r
L u
gp_ack » r =P gn gp_ack » u = gn
ZC P u ZCp u
reset .TO_.
ocp-l—=m '—|
- gp
gn_ack & —u |
u
gp_ack | P gn
zZcp |

8/11

Careful with the forks though!

o Demo: example-forks.circuit.work

inlp—e——n
inl B——® outl

—a —

inZ2 p ®

Verification results

Conformation is violated.

Trace(s) leading to the problematic state(s):

B—® outl

m-®» out0

B——» out’2

Unexpected change of output 'out0’

gd-, inl+, out2+, In2+, out0+

9/11

o Reset insertion should not break the circuit (unless you experiment with the forks)
» Still, always verify the circuit after modification
» Use the original STG as the environment for the modified circuit

o Automatic setup for active-low reset (active-high is symmetrical)

Init to one property is unset (reset signal is initially low)
Set function is assigned to 1 (reset signal is allowed to go high)
Reset function is assigned to 0 (once high reset signal never goes low again)

10/ 11

Practical: Initialisation of speed-independent circuits

» Tutorials section at workcraft.org

Modelling causality and concurrency Synthesis and verification of asynchronous circuits
= Modelling with Finite State Machines: Vending machine = Design of C-element (basic, detailed instructions)
= Petri net synthesis: Concurrent vending machine = Design of basic buck controller (medium, some hints)
= Modelling with Petri nets: Dining philosophers = Design of VME bus controller (medium, individual)
= Modelling with STGs: Distributed Mutual Exclusion = Hierarchical design of a realistic buck controller
= Modelling with STGs: Writer-biased read/write lock = |nitialisation of speed-independent circuits
Q = Modelling Genetic Regulatory Networks with STGs: = Loop breaking and offline testing
Lysis-Lysogeny switch in Phage A = Resolution of encoding (CSC) conflicts
= Optimising asynchronous pipelines using wagging = Logic decomposition and technology mapping

= Verification and synthesis of hierarchical designs

All training materials...

o Direct link: https.//workcraft.org/tutorial/synthesis/initialisation/start

11/ 11

	Introduction
	Circuit initialisation in Workcraft
	Initialisation analyser tool [scale=0.5]0homedanilworkslides2019-07-11-Dialog-Initialisationfiginitialisationanalyser-button.eps
	Initialisation via primary inputs
	Initialising combinational loops
	Reseting C-elements via SET/CLEAR pins
	Forcing C-element inputs
	Careful with the forks though!
	Verification
	Practical: Initialisation of speed-independent circuits

