

What is WORKCRAFT?

o Framework for interpreted graph models

Interoperability between different abstraction levels
Consistency for users; convenience for developers

o Elaborate graphical user interface

Visual editing, analysis, and simulation
Easy access to common operations
Possibility to script specialised actions

o Interface to back-end tools for synthesis and verification

Reuse of established theory and tools (PETRIFY, MPSAT, PUNF)
Command log for debugging and scripting

2/14

Why to use WORKCRAFT?

e Availability

Open-source front-end and plugins

Permissive freeware licenses for back-end tools
Frequent releases (4-6 per year)

Specialised tutorials and online training materials

e Extendibility

Plugins for new formalisms
Import, export and converter plugins
Interface to back-end tools

e Usability

Elaborated GUI developed with much user feedback
e Portability

Distributions for Windows, Linux, and OS X

3/14

Supported graph models

abstract behaviour

signal semantics

—[Directed Graph jé _ _ _ _[

Digital Timing
Diagram

AN

Finate State
Machine

Finate State
Transducer

v 19

v 1§ .

Petri Net

Signal Transition
Graph

4 |

[Policy Net

Conditional Partial

Order Graph

structural information

Structured
Occurrence Net

Dataflow Structure]

Digital Circuit

XMAS Circuit]

lossless translation

lossy translation

synthesis

4/14

Supported features

Model Supported features
Editing Simulation Verification Synthesis

abstract behaviour

Directed Graph Yes Yes Yes n/a
Finite State Machine Yes Yes Yes Yes')
Petri Net Yes Yes Yes Yes?)
Policy Net Yes Yes Yes n/a

signal semantics

Digital Timing Diagram Nes No n/a n/a
Finite State Transducer Yes Yes Yes Yes®)
Signal Transition Graph Yes Yes Yes Yes?)
Conditional Partial Order Graph Yes Some No Yes

structural information

Structured Occurrence Net Yes Yes ¥es n/a
Dataflow Structure Yes Yes Yes No
Digital Circuit Yes Yes Yes n/a
XMAS Circuit Yes Yes Some No

1) synthesis into Petri Net

2) re-synthesis into simpler Petri Net

3) synthesis into Signal Transition Graph

4) synthesis into Digital Circuit and re-synthesis into simpler Petri Net 14

Design flow

edit

simulate

import

specification report

) verify

visualise

export

convert

Import: ASTG, Verilog

Export: ASTG, Verilog, SVG/Dot/PDF/EPS

Convert: synthesis or translation

Verify: reachability analysis (REACH predicates, SVA-like invariants)
Visualise: CSC conflict cores, circuit initialisation, bottleneck

6/14

Design flow: Asynchronous circuits

1.

L

Specification of desired circuit behaviour with an STG model
Verification of the STG model

(a) Standard implementability properties:
consistency, deadlock freeness, output persistency
(b) Design—specific custom properties

Resolution of complete state coding (CSC) conflicts
Circuit synthesis in one of the supported design styles
Manual tweaking and optimisation of the circuit
Verification of circuit against the initial specification

(a) Synthesis tools are complicated and may have bugs
(b) Manual editing is error-prone

Exporting the circuit as a Verilog netlist for conventional EDA backend

7/14

What is hidden from the user?

Verification that the circuit conforms to its specification

1. Circuit is converted to an equivalent STG — circuit STG

2. Internal signal transitions in the environment STG (contract between
the circuit and its environment) are replaced by dummies

3. Circuit STG and environment STG are composed by PCOMP
back-end

4. Conformation property is expressed in REACH language

5. Composed STG is unfolded by calling PUNF back-end

6. Unfolding prefix and REACH expression are passed to MPSAT
back-end

7. \Verification results are parsed by the front-end

8. Violation trace is projected to the circuit for simulation and debugging

8/14

Circuit desigh example

File Edit View Tools Help

*circuit-ZCH-map [circuit] = B stg-ZCH [5TG] @ [|| Property editor [model] 2]
o Enwironment.,.|.../stg-ZC... [x
o late o no ZC
T O-= i —zc+ -7 =
: 0' -_---_"ahnn_zc"- |
a) — 0 : 1
ri+ ro+ ao+ |
al g ez i+ Tz
] a0 ; ! o - = — |
® “zc+ ~ro+ —ao+—— jain -0
s ' - [. - ‘Tool controls
. R .,; _q:}'— ai- ri- ai+ ao ro- [
) — =
@[] b |
*circuit-zCH-map 1 [STG] @ [|| pcompresult6863112684546701504 [STG] _ = B
| I e ! =1 11 o ¢ G’J é)
A b R -'-'ﬁf ==
.p‘v—":- _H-'_'-I"'- e
1204 , «-P-: |
e f X AR TR
..... 1A Y
s AT T |
i S o fo LA ____5@._.. & Editor tools |
e o o
- AT A b AI o -
-2
J/UUtPUt * rPrubIems = rjavascript * r Tasks Under the given environment (stg-ZCH.work) the circuit is: 'ﬂfkﬁpﬂﬂ& B
THNORDER = ao r1 zc al ro cscl; * conformant rkspace
OUTORDER = [a1]l [rol [cscOl; * deadlock-free Exteriial
[a1] = cscl ao'; # gate and2 1:combinational Ehazardtras c!rcu!t-ZCH-map_l.work
[1] = ri' zc' ro'; # gate nor3:combinational mrcmt-Z(_:H-map.work*
#PRAGMA: zero delay stg-ZCH.work
[2] = a0’ # gate inv:combinational pcompresult68631126845
[ro]l = [1]' ecsc@' + [2]' ri'; # gate 0al22:combinationd
[cscB] = csc@ [1]' + ao; # gate sr_nor:asynch
Set/reset pins: resetiro) =i
Exporting model "Untitled” to file “/tmp/workcraft-circuit-ZCH-map-82456523894171260911 /dev.g". 4] Il | [»

9/14

Circuit Petri nets as assembly language

a-+
a_HIGH
aLow
a (@ Z+ -
Z HIGH
Z- z Low
b+ -
b_HIGH Z
b_LOW
b —(®

10/ 14

Circuit Petri nets: Dataflow pipelines

11/14

Circuit Petri nets: xXMAS circuits

quo_memA_HIGH——qu0_hdADn- qu0_memA_LOW quo_mems_HIGH——qu0_hdBDn- qu0_memB_LOW

=l US| — ——quo_ g

snko_iTRdy_Low ™~ qu quO0_olRdy_HIGH snko_iTRdy_Low ™ qu qu0_olRdy_HIGH quo_hdBDn_LOW quo_tiBdn_Low
— —

snko_iTRdy_HIGH quO_memB_HIGH—— SnkO_iTRdy_HIGH quoihdADniLm A{LNAE n_Low

s =

Src0_olDn_LOW: qu0_olDn-—(®)

/) ffson_Low ‘ quoipn_Low |

CIk_HIGHIK_LOW i Loveik ricH) 1

clk_HIGHIK_LOW

quo_memB_LOW \ quo_memA_LOW \ MONBDN_HIGH \ udnolDn_HIGH

qu0_memA_HIGH——qu d. qu0_memB_HIGH——q Ul d ‘\ src0_olDn_HIGH =

quo_memB_HIGH——qu0_Rd. quo_memA_HIGH——quO0_RdR \ quDﬁhdADniHﬁ% quO_tiADn_HIGH
= = == p—

quo_memA_Low——qu0_hdADNRY: '\ quo_mems_Low——qu0_hdBDn '\ qu0_hdBDn_HIGH: quO_tiBDn_HIGH

quO_memA_HIGH——

/

quO_olRdy_LOW quO_olRdy_LOW

quO_memB_LOW quo_memA_LOW 40 XaBRdy_HIGH
clk_Low clk_Low

quo_mema_tow——qu0_hdARdy- quo_mems_tow——qu0_hdBRdy-—(®)

quO_memB_HIGH qu0_memA_HIGH qu0_memB_HIGH quo_mem(HIG!
J— -
(Q-—quO_iTRdy- quO_mpmA_HIGHrcO_olRdy_HIGH quO_hdARdy_HIGH src0_olRdy_HIGH quO_hdBRdy_HIGH quO_memB_H /
quO_ITRAPN \ quu,mmyﬁ% ‘ quo,ymayﬁ% ‘ / quONIRdy HIGH! |snko_iTR
| qu0_memA-+—cik_ HIGH—qu0_memA- qu0_memB+-—clk_HiGH—qu0_memB- !

H = —_ ! ! — '
1quo_iTRdy X / ‘ \quoiplkdyiH/GH ‘ \quﬂg/RdyﬁlGH \ Rdy_Low! |snko_iTRdy,
| i 0_memB_LOW quO_tiARdy_HIGH Snk0_iTRdy_HIGH quo_tiBRdy_HIGH snko_iTRdy_HIGHUO_me |

)_nfemA_LOW qu0_memA_LOW qu0_memB_LOW qu0_memB_LOW

qu0_memA_HIGH (@)-—qu0_tIBRdy- qu0_memB_HIGH

clk_Low i
quo_memB_HIGH quo_tiBRdy XIGN quO_memA_HIGH
qu0_memA_LOW tIBRdy+

qu0_memB_LOW

quo_hd8pn_HIGH——qUO\TDA+ quO_tIBDn_HIGH qu0_memB_HIGH
— 1

quO_memA_HIGH Y O_tI BDn+
qu0_hdADn_HIGH 'quO_tIADN_HIGH \

qu0_memB_LOW n+

—_—
n+ qu0_memB_LOW i
qu0_memB_HIGH quO_tIBDANIGR quO_memA_HIGH !
Cclk_LOWEIk_HIGH

qu0_memA_LOW

Snk0_iTDn_HIGH qu0_memA_LOW

/ clk_HIGHIK_LOW
quo_iTpn 6w ‘

(®-—qu0_iTDn-. Snko_iTDn_LOW

) E—
quo_hdy Dn_LM w_zmon_ww src0_olRdy_HIGH
— N

quo_hdBDn_LOW quo_tiBDn_LOW quO_iTRdy_HIGH:

clk_LOWEIk_HIGH

quo_iTRdy_LOW
qu0_memA_LOW src0_olRdy_HIGH

quo_iTRdy_LOW
qu0_memB_LOW

n- src0_olRdy_LOW quO_iTRdy_HIGH-
— _—
' quO_memA_HIGH quO_tIADNn-

n- src0_olRdy_LOW
— ——
-qu0_memA_LOW qu0_memB_HIGH quO_tlBDn -qu0_memB_LOW

clk_HIGH

- I
| src0_olbn_HIGH—Clk+ clk-<sma,orauow !

i — i
i snko,rmn)ﬁ/ KO_iTDn_LOW |

| quo_olDn_HIGH
i

| quO_iTDn_HIGH)\ quO_iTDn_LOW |
| —

quo_olDn_LOW |
i clk_Low i

12/14

Plan for the day

e Morning practical — User interface and basic functionality (90 min)

Modelling concurrent vending machine
Dining philosophers problem

e Lunch and Learn (90 min)
Carving the Perfect Engineer, by lan Phillips
e Afternoon practical — Design of asynchronous circuits (4 hours)

C-element (basic circuit, detailed explanation)

Buck controller (medium complexity with some hints)

VME bus controller (advanced material for individual work)
Analysis and optimisation of asynchronous pipelines

e Demonstration — Applications outside electronics (60 min)

Investigation of crime and accident scenes
Modelling biological systems

13/ 14

What formalisms will be covered?

abstract behaviour : signal semantics - structural information

: Digital Timing Structured
4| Directed Graph %-E__-[Diagram gb [Occurrence Net]

T\

Finate State
Machine T

b(Petri Net)Z

Finate State | ‘ Dataflow Structure
Transducer N

v 1§

Signal Transition

Grarh Digital Circuit)
T f] A
: : Conditional Partial L
[Policy Net] Order Graph XMAS Circuit]
(morning practical) (afternoon practical) (demonstration)

14 /14

	What is Workcraft?
	Why to use Workcraft?
	Supported graph models
	Supported features
	Design flow
	Design flow: Asynchronous circuits
	What is hidden from the user?
	Circuit design example
	Circuit Petri nets as assembly language
	Circuit Petri nets: Dataflow pipelines
	Circuit Petri nets: xMAS circuits
	Plan for the day
	What formalisms will be covered?

