
http://workcraft.org/



What is WORKCRAFT?

2 / 14

• Framework for interpreted graph models

• Interoperability between different abstraction levels

• Consistency for users; convenience for developers

• Elaborate graphical user interface

• Visual editing, analysis, and simulation

• Easy access to common operations

• Possibility to script specialised actions

• Interface to back-end tools for synthesis and verification

• Reuse of established theory and tools (PETRIFY, MPSAT, PUNF)

• Command log for debugging and scripting



Why to use WORKCRAFT?

3 / 14

• Availability

• Open-source front-end and plugins

• Permissive freeware licenses for back-end tools

• Frequent releases (4-6 per year)

• Specialised tutorials and online training materials

• Extendibility

• Plugins for new formalisms

• Import, export and converter plugins

• Interface to back-end tools

• Usability

• Elaborated GUI developed with much user feedback

• Portability

• Distributions for Windows, Linux, and OS X



Supported graph models

4 / 14

Conditional Partial

Order Graph

Digital Circuit

Dataflow Structure

xMAS Circuit

lossless translation lossy translation synthesis

Directed Graph

Finate State

Machine

Finate State

Transducer

Signal Transition

Graph
Petri Net

Structured

Occurrence Net

Policy Net

Digital Timing

Diagram

abstract behaviour signal semantics structural information



Supported features

5 / 14



Design flow

6 / 14

• Import: ASTG, Verilog

• Export: ASTG, Verilog, SVG/Dot/PDF/EPS

• Convert: synthesis or translation

• Verify: reachability analysis (REACH predicates, SVA-like invariants)

• Visualise: CSC conflict cores, circuit initialisation, bottleneck



Design flow: Asynchronous circuits

7 / 14

1. Specification of desired circuit behaviour with an STG model

2. Verification of the STG model

(a) Standard implementability properties:

consistency, deadlock freeness, output persistency

(b) Design–specific custom properties

3. Resolution of complete state coding (CSC) conflicts

4. Circuit synthesis in one of the supported design styles

5. Manual tweaking and optimisation of the circuit

6. Verification of circuit against the initial specification

(a) Synthesis tools are complicated and may have bugs

(b) Manual editing is error-prone

7. Exporting the circuit as a Verilog netlist for conventional EDA backend



What is hidden from the user?

8 / 14

Verification that the circuit conforms to its specification

1. Circuit is converted to an equivalent STG – circuit STG

2. Internal signal transitions in the environment STG (contract between

the circuit and its environment) are replaced by dummies

3. Circuit STG and environment STG are composed by PCOMP

back-end

4. Conformation property is expressed in REACH language

5. Composed STG is unfolded by calling PUNF back-end

6. Unfolding prefix and REACH expression are passed to MPSAT

back-end

7. Verification results are parsed by the front-end

8. Violation trace is projected to the circuit for simulation and debugging



Circuit design example

9 / 14



Circuit Petri nets as assembly language

10 / 14



Circuit Petri nets: Dataflow pipelines

11 / 14



Circuit Petri nets: xMAS circuits

12 / 14



Plan for the day

13 / 14

• Morning practical – User interface and basic functionality (90 min)

• Modelling concurrent vending machine

• Dining philosophers problem

• Lunch and Learn (90 min)

• Carving the Perfect Engineer, by Ian Phillips

• Afternoon practical – Design of asynchronous circuits (4 hours)

• C-element (basic circuit, detailed explanation)

• Buck controller (medium complexity with some hints)

• VME bus controller (advanced material for individual work)

• Analysis and optimisation of asynchronous pipelines

• Demonstration – Applications outside electronics (60 min)

• Investigation of crime and accident scenes

• Modelling biological systems



What formalisms will be covered?

14 / 14

Conditional Partial

Order Graph

Digital Circuit

Dataflow Structure

xMAS Circuit

morning practical afternoon practical demonstration

Directed Graph

Finate State

Machine

Finate State

Transducer

Signal Transition

Graph
Petri Net

Structured

Occurrence Net

Policy Net

Digital Timing

Diagram

abstract behaviour signal semantics structural information


	What is Workcraft?
	Why to use Workcraft?
	Supported graph models
	Supported features
	Design flow
	Design flow: Asynchronous circuits
	What is hidden from the user?
	Circuit design example
	Circuit Petri nets as assembly language
	Circuit Petri nets: Dataflow pipelines
	Circuit Petri nets: xMAS circuits
	Plan for the day
	What formalisms will be covered?

